Alternatives to the exponential spline in tension

Author:
Steven Pruess

Journal:
Math. Comp. **33** (1979), 1273-1281

MSC:
Primary 65D07

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537971-6

MathSciNet review:
537971

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general setting is given for smooth interpolating splines depending on a parameter such that as this parameter approaches infinity the spline converges to the piecewise linear interpolant. The theory includes the standard exponential spline in tension, a rational spline, and several cubic splines. An algorithm is given for one of the cubics; the parameter for this example controls the spacing of new knots which are introduced.

**[1]**A. CLINE, "Curve fitting in one and two dimensions using splines under tension,"*Comm. ACM*, v. 17, 1974, pp. 218-223. MR**0343533 (49:8274)****[2]**C. DE BOOR,*A Practical Guide to Splines*, Springer-Verlag, New York, 1978. MR**507062 (80a:65027)****[3]**P. DUBE, "Univariate blending functions and alternatives,"*Comput. Graphics and Image Processing*, v. 6, 1977, pp. 394-408.**[4]**P. DUBE, "Automatic generation of parameters for preliminary interactive design of free-form curves." (Submitted for publication.)**[5]**A. FORREST, "Interactive interpolation and approximation by Bézier polynomials,"*Comput. J.*, v. 15, 1972, pp. 71-79. MR**0315866 (47:4415)****[6]**W. GORDON & R. RIESENFELD, "*B*-spline curves and surfaces," in*Computer Aided Geometric Design*(Barnhill and Riesenfeld, Eds.), Academic Press, New York, 1974, pp. 95-126. MR**0349061 (50:1555)****[7]**D. HILL,*Estimation of Probability Functions Using Splines*, Doctoral Thesis, Univ. of New Mexico, Albuquerque, 1973.**[8]**D. McALLISTER, E. PASSOW & J. ROULIER, "Algorithms for computing shape preserving spline interpolations to data,"*Math. Comp.*, v. 31, 1977, pp. 717-725. MR**0448805 (56:7110)****[9]**G. NIELSON, "Some piecewise polynomial alternatives to splines under tension," in*Computer Aided Geometric Design*(Barnhill and Riesenfeld, Eds.), Academic Press, New York, 1974, pp. 209-236. MR**0371012 (51:7235)****[10]**G. NIELSON, Unpublished notes, Dept. of Mathematics, Arizona State University.**[11]**E. PASSOW & J. ROULIER, "Monotone and convex spline interpolation,"*SIAM J. Numer. Anal.*, v. 14, 1977, pp. 904-909. MR**0470566 (57:10316)****[12]**S. PRUESS, "Properties of splines in tension,"*J. Approximation Theory*, v. 17, 1976, pp. 86-96. MR**0407491 (53:11266)****[13]**D. SCHWEIKERT, "An interpolation curve using splines in tension,"*J. Math. and Phys.*, v. 45, 1966, pp. 312-317. MR**0207174 (34:6990)****[14]**L. SHAMPINE & R. ALLEN,*Numerical Computing*, Saunders, Philadelphia, Pa., 1973. MR**0359250 (50:11705)****[15]**H. SPÄTH, "Exponential spline interpolation,"*Computing*, v. 4, 1969, pp. 225-233. MR**0248966 (40:2216)****[16]**H. SPÄTH,*Spline Algorithms for Curves and Surfaces*, Utilitas Mathematica Publ. Inc., Winnipeg, 1974. MR**0359267 (50:11722)****[17]**R. WIELINGA, "Constrained interpolation using Bézier curves," in*Computer Aided Geometric Design*(Barnhill and Riesenfeld, Eds.), Academic Press, New York, 1974, pp. 153-172.**[18]**D. McALLISTER & J. ROULIER, "Interpolation by convex quadratic splines,"*Math. Comp.*, v. 32, 1978, pp. 1154-1162. MR**0481734 (58:1833)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D07

Retrieve articles in all journals with MSC: 65D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0537971-6

Article copyright:
© Copyright 1979
American Mathematical Society