New primes of the form
Author:
Robert Baillie
Journal:
Math. Comp. 33 (1979), 13331336
MSC:
Primary 10A25
Erratum:
Math. Comp. 38 (1982), 335.
MathSciNet review:
537979
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: All primes of the form for k odd, , , have now been computed. Those not previously published are given here. Numbers with and were also tested. Three new factors of Fermat numbers and a large pair of twin primes were found.
 [1]
John
Brillhart, D.
H. Lehmer, and J.
L. Selfridge, New primality criteria and
factorizations of 2^{𝑚}±1, Math.
Comp. 29 (1975),
620–647. MR 0384673
(52 #5546), http://dx.doi.org/10.1090/S00255718197503846731
 [2]
R.
E. Crandall and M.
A. Penk, A search for large twin prime
pairs, Math. Comp. 33
(1979), no. 145, 383–388. MR 514834
(81a:10010), http://dx.doi.org/10.1090/S00255718197905148343
 [3]
Richard
K. Guy, Unsolved combinatorial problems, Combinatorial
Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic
Press, London, 1971, pp. 121–127. MR 0277393
(43 #3126)
 [4]
John
C. Hallyburton Jr. and John
Brillhart, Two new factors of Fermat
numbers, Math. Comp. 29 (1975), 109–112.
Collection of articles dedicated to Derrick Henry Lehmer on the occasion of
his seventieth birthday. MR 0369225
(51 #5460), http://dx.doi.org/10.1090/S00255718197503692251
 [5]
G.
Matthew and H.
C. Williams, Some new primes of the form
𝑘⋅2ⁿ+1, Math. Comp.
31 (1977), no. 139, 797–798. MR 0439719
(55 #12605), http://dx.doi.org/10.1090/S00255718197704397190
 [6]
F. PROTH, "Théorèmes sur les nombres premiers," C. R. Acad. Sci. Paris, v. 87, 1878, p. 926.
 [7]
Raphael
M. Robinson, The converse of Fermat’s theorem, Amer.
Math. Monthly 64 (1957), 703–710. MR 0098057
(20 #4520)
 [8]
Raphael
M. Robinson, A report on primes of the form
𝑘⋅2ⁿ+1 and on factors of Fermat numbers, Proc. Amer. Math. Soc. 9 (1958), 673–681. MR 0096614
(20 #3097), http://dx.doi.org/10.1090/S00029939195800966147
 [9]
D.
E. Shippee, Four new factors of Fermat
numbers, Math. Comp. 32
(1978), no. 143, 941. MR 0472664
(57 #12359), http://dx.doi.org/10.1090/S00255718197804726644
 [10]
Harold
M. Stark, An introduction to number theory, Markham Publishing
Co., Chicago, Ill., 1970. MR 0253973
(40 #7186)
 [11]
H.
C. Williams, Primality testing on a computer, Ars Combin.
5 (1978), 127–185. MR 504864
(80d:10002)
 [1]
 JOHN BRILLHART, D. H. LEHMER & JOHN L. SELFRIDGE, "New primality criteria and factorizations of ," Math. Comp., v. 29, 1975, pp. 620647. MR 52 #5546. MR 0384673 (52:5546)
 [2]
 R. E. CRANDALL & M. A. PENK, "A search for large twin prime pairs," Math. Comp., v. 33, 1979, pp. 383388. MR 514834 (81a:10010)
 [3]
 RICHARD K. GUY, "Some unsolved problems," in Computers in Number Theory (A. O. L. Atkin and B. J. Birch, Eds.), Academic Press, New York, 1971, pp. 415422. MR 0277393 (43:3126)
 [4]
 JOHN C. HALLYBURTON, JR. & JOHN BRILLHART, "Two new factors of Fermat numbers," Math. Comp., v. 29, 1975, pp. 109112. MR 51 #5460. For a correction, see Math. Comp., v. 30, 1976, p. 198. MR 52 #13599. MR 0369225 (51:5460)
 [5]
 G. MATTHEW & H. C. WILLIAMS, "Some new primes of the form ," Math. Comp., v. 31, 1977, pp. 797798. MR 55 #12605. MR 0439719 (55:12605)
 [6]
 F. PROTH, "Théorèmes sur les nombres premiers," C. R. Acad. Sci. Paris, v. 87, 1878, p. 926.
 [7]
 RAPHAEL M. ROBINSON, "The converse of Fermat's theorem," Amer. Math. Monthly, v. 64, 1957, pp. 703710. MR 20 #4520. MR 0098057 (20:4520)
 [8]
 RAPHAEL M. ROBINSON, "A report on primes of the form and on factors of Fermat numbers," Proc. Amer. Math. Soc., v. 9, 1958, pp. 673681. MR 20 #3097. MR 0096614 (20:3097)
 [9]
 D. E. SHIPPEE, "Four new factors of Fermat numbers," Math. Comp., v. 32, 1978, p. 941. MR 0472664 (57:12359)
 [10]
 H. M. STARK, An Introduction to Number Theory, Markham, Chicago, 1970, p. 110. MR 40 #7186. MR 0253973 (40:7186)
 [11]
 H. C. WILLIAMS, "Primality testing on a computer," Ars Combinatoria, v. 5, 1978, pp. 127185. MR 504864 (80d:10002)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10A25
Retrieve articles in all journals
with MSC:
10A25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197905379790
PII:
S 00255718(1979)05379790
Keywords:
Fermat numbers,
factoring,
twin primes
Article copyright:
© Copyright 1979
American Mathematical Society
