Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

New primes of the form $ k\cdot 2\sp{n}+1$


Author: Robert Baillie
Journal: Math. Comp. 33 (1979), 1333-1336
MSC: Primary 10A25
Erratum: Math. Comp. 38 (1982), 335.
MathSciNet review: 537979
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: All primes of the form $ k \cdot {2^n} + 1$ for k odd, $ 1 \leqslant k < 150$, $ 1 \leqslant n \leqslant 1500$, have now been computed. Those not previously published are given here. Numbers with $ 151 \leqslant k \leqslant 999$ and $ n \leqslant 600$ were also tested. Three new factors of Fermat numbers and a large pair of twin primes were found.


References [Enhancements On Off] (What's this?)

  • [1] JOHN BRILLHART, D. H. LEHMER & JOHN L. SELFRIDGE, "New primality criteria and factorizations of $ {2^m} \pm 1$," Math. Comp., v. 29, 1975, pp. 620-647. MR 52 #5546. MR 0384673 (52:5546)
  • [2] R. E. CRANDALL & M. A. PENK, "A search for large twin prime pairs," Math. Comp., v. 33, 1979, pp. 383-388. MR 514834 (81a:10010)
  • [3] RICHARD K. GUY, "Some unsolved problems," in Computers in Number Theory (A. O. L. Atkin and B. J. Birch, Eds.), Academic Press, New York, 1971, pp. 415-422. MR 0277393 (43:3126)
  • [4] JOHN C. HALLYBURTON, JR. & JOHN BRILLHART, "Two new factors of Fermat numbers," Math. Comp., v. 29, 1975, pp. 109-112. MR 51 #5460. For a correction, see Math. Comp., v. 30, 1976, p. 198. MR 52 #13599. MR 0369225 (51:5460)
  • [5] G. MATTHEW & H. C. WILLIAMS, "Some new primes of the form $ k \bullet {2^n} + 1$," Math. Comp., v. 31, 1977, pp. 797-798. MR 55 #12605. MR 0439719 (55:12605)
  • [6] F. PROTH, "Théorèmes sur les nombres premiers," C. R. Acad. Sci. Paris, v. 87, 1878, p. 926.
  • [7] RAPHAEL M. ROBINSON, "The converse of Fermat's theorem," Amer. Math. Monthly, v. 64, 1957, pp. 703-710. MR 20 #4520. MR 0098057 (20:4520)
  • [8] RAPHAEL M. ROBINSON, "A report on primes of the form $ k \bullet {2^n} + 1$ and on factors of Fermat numbers," Proc. Amer. Math. Soc., v. 9, 1958, pp. 673-681. MR 20 #3097. MR 0096614 (20:3097)
  • [9] D. E. SHIPPEE, "Four new factors of Fermat numbers," Math. Comp., v. 32, 1978, p. 941. MR 0472664 (57:12359)
  • [10] H. M. STARK, An Introduction to Number Theory, Markham, Chicago, 1970, p. 110. MR 40 #7186. MR 0253973 (40:7186)
  • [11] H. C. WILLIAMS, "Primality testing on a computer," Ars Combinatoria, v. 5, 1978, pp. 127-185. MR 504864 (80d:10002)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10A25

Retrieve articles in all journals with MSC: 10A25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1979-0537979-0
Keywords: Fermat numbers, factoring, twin primes
Article copyright: © Copyright 1979 American Mathematical Society