Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A weak discrete maximum principle and stability of the finite element method in $ L\sb{\infty }$ on plane polygonal domains. I


Author: Alfred H. Schatz
Journal: Math. Comp. 34 (1980), 77-91
MSC: Primary 65N30
MathSciNet review: 551291
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega $ be a polygonal domain in the plane and $ S_r^h(\Omega )$ denote the finite element space of continuous piecewise polynomials of degree $ \leqslant r - 1\;(r \geqslant 2)$ defined on a quasi-uniform triangulation of $ \Omega $ (with triangles roughly of size h). It is shown that if $ {u_h} \in S_r^h(\Omega )$ is a "discrete harmonic function" then an a priori estimate (a weak maximum principle) of the form

$\displaystyle {\left\Vert {{u_h}} \right\Vert _{{L_\infty }(\Omega )}} \leqslant C{\left\Vert {{u_h}} \right\Vert _{{L_\infty }(\partial \Omega )}}$

holds.

Now let u be a continuous function on $ \bar \Omega $ and $ {u_h}$ be the usual finite element projection of u into $ S_r^h(\Omega )$ (with $ {u_h}$ interpolating u at the boundary nodes). It is shown that for any $ \chi \in S_r^h(\Omega )$

$\displaystyle {\left\Vert {u - {u_h}} \right\Vert _{{L_\infty }(\Omega )}} \leq... ...ext{if}}\;r = 2,} \\ 0 & {{\text{if}}\;r \geqslant 3.} \\ \end{array} } \right.$

This says that (modulo a logarithm for $ r = 2$) the finite element method is bounded in $ {L_\infty }$ on plane polygonal domains.

References [Enhancements On Off] (What's this?)

  • [1] P. G. CIARLET & P. A. RAVIART, "Maximum principle and uniform convergence for the finite element method," Comput. Methods Appl. Mech. Engrg., v. 2, 1973, pp. 17-31. MR 0375802 (51:11992)
  • [2] P. GRISVARD, "Behavior of solutions of an elliptic boundary value problem in a polygonal or polyhedral domain," in Numerical Solution of Partial Differential Equations III (SYNSPADE 1975), B. Hubbard, Editor, Academic Press, New York, 1975, pp. 207-274. MR 0466912 (57:6786)
  • [3] O. A. LADYŽENSKAJA & N. N. URAL'CEVA, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. MR 0244627 (39:5941)
  • [4] H. D. MITTELMAN, "On a discrete maximum principle in the finite element method." (Preprint.)
  • [5] F. NATTERER, "Über die punktweise Konvergenz finiter elemente," Numer. Math., v. 25, 66-77. MR 0474884 (57:14514)
  • [6] J. A. NITSCHE, $ {L_\infty }$ Convergence of Finite Element Approximation, Second Conference on Finite Elements, Rennes, 1975. MR 568857 (81e:65058)
  • [7] J. A. NITSCHE, $ {L_\infty }$ Convergence of Finite Element Approximations, Proc. Sympos. on Mathematical Aspects of Finite Element Methods, Rome, 1975.
  • [8] J. A. NITSCHE & A. H. SCHATZ, "Interior estimates for Ritz-Galerkin methods," Math. Comp., v. 28, 1974, pp. 937-958. MR 0373325 (51:9525)
  • [9] A. H. SCHATZ & L. B. WAHLBIN, "Interior maximum norm estimates for finite element methods," Math. Comp., v. 31, 1976, pp. 414-442. MR 0431753 (55:4748)
  • [10] A. H. SCHATZ & L. B. WAHLBIN, "Maximum norm estimates in the finite element method on plane polygonal domains. Part I," Math. Comp., v. 32, 1978, pp. 73-109. MR 0502065 (58:19233a)
  • [11] A. H. SCHATZ & L. B. WAHLBIN, "Maximum norm estimates in the finite element method on plane polygonal domains. Part II, Refinements," Math. Comp., v. 33, 1979, pp. 465-492. MR 0502067 (58:19233b)
  • [12] R. SCOTT, "Optimal $ {L^\infty }$ estimates for the finite element method on irregular meshes," Math. Comp., v. 30, 1976, pp. 681-697. MR 0436617 (55:9560)
  • [13] G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR 0443377 (56:1747)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1980-0551291-3
Article copyright: © Copyright 1980 American Mathematical Society