Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A cardinal function method of solution of the equation $ \Delta u=u-u\sp{3}$


Author: L. R. Lundin
Journal: Math. Comp. 35 (1980), 747-756
MSC: Primary 65P05
DOI: https://doi.org/10.1090/S0025-5718-1980-0572852-1
MathSciNet review: 572852
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The steady-state form of the Klein-Gordon equation is given by $ (^\ast)$

$\displaystyle \Delta u = u - {u^3},\quad u = u(X),\quad X \in {R^3}.$

For solutions which are spherically symmetric, $ (^\ast)$ takes the form $ \ddot u + 2\dot u/r = u - {u^3}$, $ u = u(r)$, where r is the distance from the origin in $ {R^3}$. The function $ y = ru$ satisfies $ {(^\ast}^\ast)$

$\displaystyle \ddot y = y - {y^3}/{r^2}.$

It is known that $ {(^\ast}^\ast)$ has solutions $ \{ {y_n}\} _{n = 0}^\infty $, where $ {y_n}$ has exactly n zeros in $ (0,\infty )$, and where $ y(0) = y(\infty ) = 0$.

In this paper, an approximation is obtained for the solution $ {y_0}$ by minimizing a certain functional over a class of functions of the form

$\displaystyle \sum\limits_{k = - m}^m {{a_k}\;} {\operatorname{sinc}}\left[ {\frac{{r - k{h_m}}}{{{h_m}}}} \right].$

It is shown that the norm of the error is $ O({m^{3/8}}\exp ( - \alpha m^{1/2}))$ as $ m \to \infty $, where $ \alpha $ is positive.

References [Enhancements On Off] (What's this?)

  • [1] C. V. COFFMAN, "Uniqueness of the ground state solution for $ \Delta u - u + {u^3} = 0$ and a variational characterization of other solutions," Arch. Rational Mech. Anal., v. 46, 1972, pp. 81-92. MR 0333489 (48:11814)
  • [2] J. CHAUVETTE & F. STENGER, "The approximate solution of the nonlinear equation $ \Delta u = u - {u^3}$," J. Math. Anal. Appl., v. 51. 1975, pp. 229-242. MR 0373320 (51:9520)
  • [3] L. COLLAT Z, Functional Analysis and Numerical Mathematics, Academic Press, New York, 1966. MR 0205126 (34:4961)
  • [4] G. W. DAREWICH & H. SCHIFF, "Particle solutions of a class of nonlinear field equations," J. Mathematical Phys., v. 8, 1967, pp. 1479-1482.
  • [5] R. FINKELSTEIN, R. LE LEVIER & M. RUDERMAN, "Nonlinear spinor fields," Phys. Rev., v. 83, 1950, pp. 326-332. MR 0042204 (13:76b)
  • [6] E. HILLE, Analytic Function Theory, Vol. 2, Blaisdell, Waltham, Mass., 1962.
  • [7] IMSL Library 2, Edition 4 (Fortran V), International Mathematical and Statistical Libraries, Inc., Houston, Texas, 1974.
  • [8] L. LUNDIN & F. STENGER, "Cardinal type approximation of a function and its derivatives," SIAM J. Math. Anal., v. 10, 1979, pp. 139-160. MR 516759 (81c:41043)
  • [9] J. McNAMEE, F. STENGER & E. L. WHITNEY, "Whittaker's cardinal function in retrospect," Math. Comp., v. 25, 1963, pp. 141-154. MR 0301428 (46:586)
  • [10] Z. NEHARI, "On a nonlinear differential equation arising in nuclear physics," Proc. Roy. Irish Acad. Sect. A, v. 62, 1963, pp. 117-135. MR 0165176 (29:2465)
  • [11] P. D. ROBINSON, "Extremum principles for the equation $ \nabla \phi = \phi - {\phi ^3}$," J. Mathematical Phys., v. 12, 1971, pp. 23-28.
  • [12] W. RUDIN, Real and Complex Analysis, McGraw-Hill, New York, 1966. MR 0210528 (35:1420)
  • [13] G. H. RYDER, "Boundary value problems for a class of nonlinear differential equations," Pacific J. Math., v. 22, 1967, pp. 477-503. MR 0219794 (36:2873)
  • [14] H. SCHIFF, "A classical theory of bosons," Proc. Roy. Soc. Ser. A, v. 269, 1962, pp. 277-286. MR 0141455 (25:4860)
  • [15] F. STENGER, Convergence and Error of the Bubnov-Galerkin Method, SIAM Conf. on Ordinary Differential Equations, Fall 1972.
  • [16] F. STENGER, "Approximation via Whittaker's cardinal function," J. Approximation Theory, v. 17, 1976, pp. 222-240. MR 0481786 (58:1885)
  • [17] F. STENGER, "Optimal convergence of minimum norm approximations in $ {H_p}$." (Submitted.)
  • [18] J. L. SYNGE, "On a certain nonlinear differential equation," Proc. Roy. Irish Acad. Sect. A, v. 62, 1961, pp. 17-41. MR 0138893 (25:2333)
  • [19] P. G. CIARLET, M. H. SCHULTZ & R. S. VARGA, "Numerical methods of high-order accuracy for nonlinear problems, III. Eigenvalue problems," Numer. Math., v. 12, 1968, pp. 120-133. MR 0233517 (38:1838)
  • [20] K. YOSIDA, Functional Analysis, Springer-Verlag, New York, 1966.
  • [21] E. T. WHITTAKER, "On the functions which are represented by the expansions of the interpolation theory," Proc. Roy. Soc. Edinburgh Sect. A, v. 35, 1915, pp. 181-194.
  • [22] J. M. WHITTAKER, "On the cardinal function of interpolation theory," Proc. Edinburgh Math. Soc. Ser. I (2), 1927, pp. 41-46.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65P05

Retrieve articles in all journals with MSC: 65P05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0572852-1
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society