Convergence of a block-by-block method for nonlinear Volterra integro-differential equations

Author:
Athena Makroglou

Journal:
Math. Comp. **35** (1980), 783-796

MSC:
Primary 65R20

MathSciNet review:
572856

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of a block-by-block method for solving Volterra integral equations is extended to nonsingular Volterra integro-differential equations. Convergence is proved and a rate of convergence is found. The convergence results obtained are analogous to those obtained by Weiss [12] for Volterra integral equations. Several numerical examples are included.

**[1]**Owe Axelsson,*A class of 𝐴-stable methods*, Nordisk Tidskr. Informationsbehandling (BIT)**9**(1969), 185–199. MR**0255059****[2]**C. T. H. BAKER, A. MAKROGLOU & E. SHORT,*Stability Regions for Volterra Integro-Differential Equations*, Numerical Analysis Report #22, Dept. of Mathematics, Univ. of Manchester, U. K., September 1977.**[3]**H. Brunner and J. D. Lambert,*Stability of numerical methods for Volterra integro-differential equations*, Computing (Arch. Elektron. Rechnen)**12**(1974), no. 1, 75–89 (English, with German summary). MR**0418490****[4]**Philip J. Davis and Philip Rabinowitz,*Numerical integration*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967. MR**0211604****[5]**J. T. Day,*A Runge-Kutta method for the numerical solution of the Goursat problem in hyperbolic partial differential equations*, Comput. J.**9**(1966), 81–83. MR**0192665****[6]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[7]**Peter Linz,*Linear multistep methods for Volterra integro-differential equations.*, J. Assoc. Comput. Mach.**16**(1969), 295–301. MR**0239786****[8]**A. MAKROGLOU,*Numerical Solution of Volterra Integro-Differential Equations*, Ph. D. thesis, Univ. of Manchester, U. K., Feb. 1977.**[9]**William L. Mocarsky,*Convergence of step-by-step methods for non-linear integro-differential equations*, J. Inst. Math. Appl.**8**(1971), 235–239. MR**0287734****[10]**Kenneth W. Neves,*Automatic integration of functional differential equations: an approach*, ACM Trans. Math. Software**1**(1975), no. 4, 357–368. MR**0386313****[11]**Lucio Tavernini,*One-step methods for the numerical solution of Volterra functional differential equations*, SIAM J. Numer. Anal.**8**(1971), 786–795. MR**0295617****[12]**R. WEISS,*Numerical Procedures for Volterra Integral Equations*, Ph. D. thesis, Computer Centre, Australian National University, Canberra, 1972.

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20

Retrieve articles in all journals with MSC: 65R20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0572856-9

Article copyright:
© Copyright 1980
American Mathematical Society