Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A special class of Bell polynomials


Author: F. T. Howard
Journal: Math. Comp. 35 (1980), 977-989
MSC: Primary 10A40; Secondary 05A15
DOI: https://doi.org/10.1090/S0025-5718-1980-0572870-3
MathSciNet review: 572870
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We examine the integers $ V(n,k)$ defined by means of

$\displaystyle k!\sum\limits_{n = 0}^\infty {V(n,k){x^n}/n! = {{[x({e^x} + 1) - 2({e^x} - 1)]}^k},} $

and, in particular, we show how these integers are related to the Bernoulli, Genocchi and van der Pol numbers, and the numbers generated by the reciprocal of $ {e^x} - x - 1$. We prove that the $ V(n,k)$ are also related to the numbers $ W(n,k)$ defined by

$\displaystyle k!\sum\limits_{n = 0}^\infty {W(n,k){x^n}/n! = {{[(x - 2)({e^x} - 1)]}^k}} $

in much the same way the associated Stirling numbers are related to the Stirling numbers. Finally, we examine, more generally, the Bell polynomials $ {B_{n,k}}({a_1},{a_2},3 - \alpha ,4 - \alpha ,5 - \alpha , \ldots )$ and show how the methods of this paper can be used to prove several formulas involving the Bernoulli and Stirling numbers.

References [Enhancements On Off] (What's this?)

  • [1] L. CARLITZ, "Eulerian numbers and polynomials," Math. Mag., v. 33, 1959, pp. 247-260. MR 0104845 (21:3596)
  • [2] L. COMTET, Advanced Combinatorics, Reidel, Dordrecht and Boston, Mass., 1974. MR 0460128 (57:124)
  • [3] F. T. HOWARD, "A sequence of numbers related to the exponential function," Duke Math. J., v. 34, 1967, pp. 599-616. MR 0217035 (36:130)
  • [4] F. T. HOWARD, "Associated Stirling numbers," Fibonacci Quart. (To appear.) MR 600368 (82e:05023)
  • [5] F. T. HOWARD, "Bell polynomials and degenerate Stirling numbers," Rend. Sem. Mat. Padova. (To appear.) MR 569660 (81g:10027)
  • [6] F. T. HOWARD, "Numbers generated by the reciprocal of $ {e^x} - x - 1$," Math. Comp., v. 31, 1977, pp. 581-598. MR 0439741 (55:12627)
  • [7] F. T. HOWARD, "Polynomials related to the Bessel functions," Trans. Amer. Math. Soc., v. 210, 1975, pp. 233-248. MR 0379348 (52:253)
  • [8] F. T. HOWARD, "Properties of the van der Pol numbers and polynomials," J. Reine Angew. Math., v. 260, 1973, pp. 35-46. MR 0318054 (47:6603)
  • [9] F. T. HOWARD, "The van der Pol numbers and a related sequence of rational numbers," Math. Nachr., v. 42, 1969, pp. 80-102. MR 0258739 (41:3385)
  • [10] C. JORDAN, Calculus of Finite Differences, Chelsea, New York, 1950.
  • [11] J. RIORDAN, An Introduction to Combinatorial Analysis, Wiley, New York, 1958. MR 0096594 (20:3077)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10A40, 05A15

Retrieve articles in all journals with MSC: 10A40, 05A15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0572870-3
Keywords: Exponential partial Bell polynomial, Stirling number of the second kind, associated Stirling number of the second kind, Bernoulli number, Genocchi number, van der Pol number
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society