Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

On the coupling of boundary integral and finite element methods


Authors: Claes Johnson and J.-Claude Nédélec
Journal: Math. Comp. 35 (1980), 1063-1079
MSC: Primary 65N30
MathSciNet review: 583487
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\Omega ^c}$ be the complementary of a bounded regular domain in $ {{\mathbf{R}}^2}$ of boundary $ \Gamma $. We consider the problem (1)

$\displaystyle \left\{ {\begin{array}{*{20}{c}} {\Delta u = f;} & {{\text{in}}\;{\Omega ^c},} \\ {u{\vert _\Gamma } = {u_{0,}}} & {} \\ \end{array} } \right.$

where f has its support in a bounded subdomain $ {\Omega _1}$ of $ {\Omega ^c}$. Let $ {\Gamma _2}$ be the common boundary of $ {\Omega _1}$ and $ {\Omega _2} = {\Omega ^c} - {\Omega _1}$. We solve the problem (1) by using an equivalent system of equations involving an integral equation on $ {\Gamma ^2}$ coupled with the equation: (2)

$\displaystyle \left\{ {\begin{array}{*{20}{c}} {\Delta u = f} \hfill & {{\text{... ...{\vert _{{\Gamma _2}}} = \lambda .} \hfill & {} \hfill \\ \end{array} } \right.$

We introduce a finite element approximation of Eq. (2) and of the integral equation and we prove optimal error estimates.

References [Enhancements On Off] (What's this?)

  • [1] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174 (58 #25001)
  • [2] M. DJAOUA, Equations Intégrales pour un Problème Singulier dans le Plan, These 3é cycle, Paris, 1977.
  • [3] J. GIROIRE, Rapport Interne à l'Ecole Polytechnique, Centre de Mathématiques Appliquées, Palaiseau, 1976.
  • [4] Donald Greenspan and Peter Werner, A numerical method for the exterior Dirichlet problem for the reduced wave equation, Arch. Rational Mech. Anal. 23 (1966), 288–316. MR 0238501 (38 #6777)
  • [5] George C. Hsiao and Wolfgang L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), no. 3, 449–481. MR 0461963 (57 #1945)
  • [6] M. N. Le Roux, Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2, RAIRO Anal. Numér. 11 (1977), no. 1, 27–60, 112 (French, with English summary). MR 0448954 (56 #7259)
  • [7] J. C. NEDELEC, Cours de l'Ecole d'Eté d'Analyse Numérique, C.E.A., I.R.I.A., E.P.F., 1977.
  • [8] J.-C. Nédélec and J. Planchard, Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans 𝑅³, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 105–129 (French, with Loose English summary). MR 0424022 (54 #11992)
  • [9] R. Seeley, Topics in pseudo-differential operators, Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968) Edizioni Cremonese, Rome, 1969, pp. 167–305. MR 0259335 (41 #3973)
  • [10] P. Silvester and M.-S. Hsieh, Finite-element solution of 2-dimensional exterior-field problems, Proc. Inst. Elec. Engrs. 118 (1971), 1743–1748. MR 0334553 (48 #12872)
  • [11] O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, The coupling of the finite element method and boundary solution procedures, Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355–375. MR 0451784 (56 #10066)
  • [12] W. L. Wendland, Elliptic systems in the plane, Monographs and Studies in Mathematics, vol. 3, Pitman (Advanced Publishing Program), Boston, Mass., 1979. MR 518816 (80h:35053)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1980-0583487-9
PII: S 0025-5718(1980)0583487-9
Article copyright: © Copyright 1980 American Mathematical Society