Local stability conditions for the Babuška method of Lagrange multipliers

Author:
Juhani Pitkäranta

Journal:
Math. Comp. **35** (1980), 1113-1129

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1980-0583490-9

MathSciNet review:
583490

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the so-called Babuška method of finite elements with Lagrange multipliers for numerically solving the problem in , on , , . We state a number of local conditions from which we prove the uniform stability of the Lagrange multiplier method in terms of a weighted, mesh-dependent norm. The stability conditions given weaken the conditions known so far and allow mesh refinements on the boundary. As an application, we introduce a class of finite element schemes, for which the stability conditions are satisfied, and we show that the convergence rate of these schemes is of optimal order.

**[1]**I. BABUSKA, "The finite element method with Lagrange multipliers,"*Numer. Math.*, v. 20, 1973, pp. 179-192. MR**0359352 (50:11806)****[2]**I. BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method," in*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(A. K. Aziz, Ed.), Academic Press, New York, 1972. MR**0347104 (49:11824)****[3]**I. BABUŠKA, R. B. KELLOGG & J. PITKÄRANTA, "Direct and inverse error estimates for finite elements with mesh refinements,"*Numer. Math.*, v. 33, 1979, pp. 447-471. MR**553353 (81c:65054)****[4]**F. BREZZI, "On the existence, uniqueness and approximations of saddle-point problems arising from Lagrange multipliers,"*RAIRO, Sèr. Anal. Numér.*, v. 8, 1974, pp. 129-151. MR**0365287 (51:1540)****[5]**P. G. CIARLET,*The Finite Element Method for Elliptic Problems*, North-Holland, Amsterdam, 1978. MR**0520174 (58:25001)****[6]**J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, "The stability in of the -projection into finite element function spaces,"*Numer. Math.*, v. 23, 1975, pp. 193-197. MR**0383789 (52:4669)****[7]**J. L. LIONS & E. MAGENES,*Problèmes aux Limites Non Homogènes et Applications*, Vol. 1, Dunod, Paris, 1968. MR**0247243 (40:512)****[8]**J. PITKÄRANTA, "Boundary subspaces for the finite element method with Lagrange multipliers,"*Numer. Math.*, v. 33, 1979, pp. 273-289. MR**553590 (82b:65138)****[9]**J. PITKÄRANTA,*The Finite Element Method with Lagrange Multipliers for Domains With Corners*, Report HTKK-MAT-A141, Institute of Mathematics, Helsinki University of Technology, 1979.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1980-0583490-9

Article copyright:
© Copyright 1980
American Mathematical Society