Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Note on irreducibility testing


Author: John Brillhart
Journal: Math. Comp. 35 (1980), 1379-1381
MSC: Primary 12-04; Secondary 10M05, 68C20
MathSciNet review: 583515
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An effective method is developed for deducing the irreducibility of a given polynomial with integer coefficients from a single occurrence of a prime value of that polynomial.


References [Enhancements On Off] (What's this?)

  • [1] G. PÓLYA & G. SZEGÖ, Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, Berlin, 1964, b. 2, VIII, p. 127.
  • [2] J. V. USPENSKY, Theory of Equations, McGraw-Hill, New York, 1948.
  • [3] John Brillhart, Michael Filaseta, and Andrew Odlyzko, On an irreducibility theorem of A. Cohn, Canad. J. Math. 33 (1981), no. 5, 1055–1059. MR 638365, 10.4153/CJM-1981-080-0
  • [4] D. K. Faddeev and I. S. Sominskii, Problems in higher algebra, Translated by J. L. Brenner, W. H. Freeman and Co., San Francisco-London, 1965. MR 0176990
  • [5] A. L. CAUCHY, "Exercises de mathématiques," 1829 Oeuvres (2), v. 9, p. 122; Journ. École Poly., v. 25, 1837, p. 176.
  • [6] Morris Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, Mathematical Surveys, No. 3, American Mathematical Society, New York, N. Y., 1949. MR 0031114

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12-04, 10M05, 68C20

Retrieve articles in all journals with MSC: 12-04, 10M05, 68C20


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1980-0583515-0
Keywords: Irreducibility testing
Article copyright: © Copyright 1980 American Mathematical Society