A stable finite element method for initial-boundary value problems for first-order hyperbolic systems

Author:
Ragnar Winther

Journal:
Math. Comp. **36** (1981), 65-86

MSC:
Primary 65N30

MathSciNet review:
595042

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A nonstandard finite element method for initial-boundary value problems for first-order hyperbolic systems in one space dimension with general boundary conditions is analyzed. The method can be considered as a generalization of the box scheme. We first establish a stability result for the method and then derive several error estimates.

**[1]**Robert A. Adams,*Sobolev spaces*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR**0450957****[2]**Garth A. Baker,*A finite element method for first order hyperbolic equations*, Math. Comput.**29**(1975), no. 132, 995–1006. MR**0400744**, 10.1090/S0025-5718-1975-0400744-5**[3]**Jim Douglas Jr., Todd Dupont, and Mary F. Wheeler,*A quasi-projection analysis of Galerkin methods for parabolic and hyperbolic equations*, Math. Comp.**32**(1978), no. 142, 345–362. MR**0495012**, 10.1090/S0025-5718-1978-0495012-2**[4]**Jim Douglas Jr. and Todd Dupont,*Collocation methods for parabolic equations in a single space variable*, Lecture Notes in Mathematics, Vol. 385, Springer-Verlag, Berlin-New York, 1974. Based on 𝐶¹-piecewise-polynomial spaces. MR**0483559****[5]**Todd Dupont,*Galerkin methods for first order hyperbolics: an example*, SIAM J. Numer. Anal.**10**(1973), 890–899. MR**0349046****[6]**Max D. Gunzburger,*On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems*, Math. Comp.**31**(1977), no. 139, 661–675. MR**0436624**, 10.1090/S0025-5718-1977-0436624-0**[7]**Bertil Gustafsson, Heinz-Otto Kreiss, and Arne Sundström,*Stability theory of difference approximations for mixed initial boundary value problems. II*, Math. Comp.**26**(1972), 649–686. MR**0341888**, 10.1090/S0025-5718-1972-0341888-3**[8]**Heinz-Otto Kreiss,*Stability theory for difference approximations of mixed initial boundary value problems. I*, Math. Comp.**22**(1968), 703–714. MR**0241010**, 10.1090/S0025-5718-1968-0241010-7**[9]**Mitchell Luskin,*An approximation procedure for nonsymmetric, nonlinear hyperbolic systems with integral boundary conditions*, SIAM J. Numer. Anal.**16**(1979), no. 1, 145–164. MR**518690**, 10.1137/0716011**[10]**Vidar Thomée,*A stable difference scheme for the mixed boundary problem for a hyperbolic, first-order system in two dimensions*, J. Soc. Indust. Appl. Math.**10**(1962), 229–245. MR**0154422****[11]**Vidar Thomée,*Estimates of the Friedrichs-Lewy type for mixed problems in the theory of linear hyperbolic differential equations in two independent variables*, Math. Scand.**5**(1957), 93–113. MR**0092082****[12]**Vidar Thomée,*Negative norm estimates and superconvergence in Galerkin methods for parabolic problems*, Math. Comp.**34**(1980), no. 149, 93–113. MR**551292**, 10.1090/S0025-5718-1980-0551292-5**[13]**Ragnar Winther,*A conservative finite element method for the Korteweg-de Vries equation*, Math. Comp.**34**(1980), no. 149, 23–43. MR**551289**, 10.1090/S0025-5718-1980-0551289-5

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1981-0595042-6

Article copyright:
© Copyright 1981
American Mathematical Society