Uniqueness of the optimal nodes of quadrature formulae

Author:
Borislav D. Bojanov

Journal:
Math. Comp. **36** (1981), 525-546

MSC:
Primary 65D30; Secondary 41A55

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606511-4

MathSciNet review:
606511

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the uniqueness of the quadrature formula with minimal error in the space , of -periodic differentiable functions among all quadratures with *n* free nodes , , of fixed multiplicities , respectively. As a corollary, we get that the equidistant nodes are optimal in for if .

**[1]**N. I. Ahiezer,*Lectures on Approximation Theory*, "Nauka", Moscow, 1965. MR**0188672 (32:6108)****[2]**R. B. Barrar & H. L. Loeb, "On monosplines with odd multiplicities of least norm,"*J. Analyse Math.*, v. 33, 1978, pp. 12-38. MR**516041 (80j:41013)****[3]**D. Barrow, "On multiple node Gaussian quadrature formulae,"*Math. Comp.*, v. 32, 1978, pp. 431-439. MR**482257 (80j:41045)****[4]**R. Bellman, "On the positivity of determinants with dominant main diagonal,"*J. Math. Anal. Appl.*, v. 59, 1977, p. 210. MR**0441991 (56:380)****[5]**B. D. Bojanov, "Existence and characterization of monosplines of least deviation,"*Constructive Function Theory*'77, Sofia, 1980, pp. 249-268. BAN.**[6]**B. D. Bojanov, "Uniqueness of the monosplines of least deviation,"*Numerische Integration*, ISNM 45, Birkhäuser-Verlag, Basel, 1979, pp. 67-97. MR**561282 (81f:65009)****[7]**L. Čakalov, "On a representation of Newton's quotients in the interpolation theory and its applications,"*Annuaire Univ. Sofia Fac. Math. Méc.*, v. 34, 1938, pp. 353-405.**[8]**K. Jetter & G. Lange, "Die Eindeutigkeit -optimaler polynomialer Monosplines,"*Math. Z.*, v. 158, 1978, pp. 23-34. MR**0467094 (57:6961)****[9]**R. S. Johnson, "On monosplines of least deviation,"*Trans. Amer. Math. Soc.*, v. 96, 1960, pp. 458-477. MR**0122938 (23:A270)****[10]**A. A. Ligun, "Exact inequalities for spline functions and best quadrature formulae for certain classes of functions,"*Mat. Zametki*, v. 19, 1979, pp. 913-926. MR**0427907 (55:937)****[11]**N. E. Lušpai, "Best quadrature formulae for classes of differentiable periodic functions,"*Mat. Zametki*, v. 6, 1969, pp. 475-482.**[12]**N. E. Lušpai, "Optimal quadrature formulae for classes of functions with an -integrable*r*-th derivative,"*Anal. Math.*, v. 5, 1979, pp. 67-88. MR**535497 (80j:41048)****[13]**C. Micchelli, "The fundamental theorem of algebra for monosplines with multiplicities,"*Linear Operators and Approximation*, ISNM v. 20, Birkhäuser-Verlag, Basel, 1972, pp. 419-430. MR**0393951 (52:14758)****[14]**V. P. Motorniĭ, "On the best quadrature formula of the form for certain classes of periodic differentiable functions,"*Izv. Akad. Nauk SSSR Ser. Mat.*, v. 38, 1974, pp. 583-614. MR**0390610 (52:11435)****[15]**J. M. Ortega & W. C. Rhetnboldt,*Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York, 1970. MR**0273810 (42:8686)****[16]**L. L. Schumaker, "Zeros of spline functions and applications,"*J. Approximation Theory*, v. 18, 1976, pp. 152-168. MR**0430611 (55:3616)****[17]**J. T. Schwartz,*Nonlinear Functional Analysis*, Gordon and Breach, New York, 1969. MR**0433481 (55:6457)****[18]**A. A. Žensykbaev, "On the best quadrature formula on the class ,"*Dokl. Akad. Nauk SSSR*, v. 227, 1976, pp. 277-279. MR**0405816 (53:9608)****[19]**A. A. Žensykbaev, "Best quadrature formula for the class ,"*Anal. Math.*, v. 3, 1977, pp. 83-93. MR**0447924 (56:6234)****[20]**A. A. Žensykbaev, "Best quadrature formula for certain classes of periodic functions,"*Izv. Akad. Nauk SSSR Ser. Mat.*, v. 41, 1977, pp. 1110-1124. MR**0471271 (57:11008)****[21]**A. A. Zensykbaev, "Characteristic properties of the best quadrature formulae,"*Sibirsk. Mat. Ž.*, v. 20, 1979, pp. 49-68. MR**523136 (80f:41022)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30,
41A55

Retrieve articles in all journals with MSC: 65D30, 41A55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0606511-4

Article copyright:
© Copyright 1981
American Mathematical Society