Subgroups of finite index in a free product with amalgamated subgroup
Author:
W. W. Stothers
Journal:
Math. Comp. 36 (1981), 653662
MSC:
Primary 20E06; Secondary 10D07, 20E07
MathSciNet review:
606522
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let G be a free product of finitely many finite groups with amalgamated subgroup. Using coset diagrams, a recurrence relation is obtained for the number of subgroups, and of free subgroups, of each finite index in G. In the latter case, an asymptotic formula is derived. When the amalgamated subgroup is central, the relation takes a simpler form.
 [1]
H.
S. M. Coxeter and W.
O. J. Moser, Generators and relations for discrete groups,
Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue
Folge, Band 14, SpringerVerlag, BerlinGöttingenNew York, 1965. MR 0174618
(30 #4818)
 [2]
Wilfried
Imrich, Subgroup theorems and graphs, Combinatorial
mathematics, V (Proc. Fifth Austral. Conf., Roy. Melbourne Inst. Tech.,
Melbourne, 1976) Springer, Berlin, 1977, pp. 1–27. Lecture
Notes in Math., Vol. 622. MR 0463016
(57 #2980)
 [3]
Wilfried
Imrich, On the number of subgroups of given index in
𝑆𝐿₂(𝑍), Arch. Math. (Basel)
31 (1978/79), no. 3, 224–231. MR 521474
(80c:20062), http://dx.doi.org/10.1007/BF01226441
 [4]
Morris
Newman, Asymptotic formulas related to free
products of cyclic groups, Math. Comp.
30 (1976), no. 136, 838–846. MR 0466047
(57 #5930), http://dx.doi.org/10.1090/S00255718197604660479
 [5]
W.
W. Stothers, Free subgroups of the free product of
cyclic groups, Math. Comp.
32 (1978), no. 144, 1274–1280. MR 502015
(80c:20037), http://dx.doi.org/10.1090/S00255718197805020158
 [6]
K.
Wohlfahrt, Über einen Satz von Dey und die Modulgruppe,
Arch. Math. (Basel) 29 (1977), no. 5, 455–457
(German). MR
0507036 (58 #22326)
 [1]
 H. S. M. Coxeter & W. O. J. Moser, Generators and Relations for Discrete Groups, SpringerVerlag, Berlin, 1965. MR 30 #4818. MR 0174618 (30:4818)
 [2]
 W. Imrich, "Subgroup theorems and graphs," Combinatorial Mathematics V, Lecture Notes in Math., Vol. 622, SpringerVerlag, Berlin and New York, 1977, pp. 127. MR 57 #2980. MR 0463016 (57:2980)
 [3]
 W. Imrich, "On the number of subgroups of given index in ," Arch. Math., v. 31, 1978, pp. 224231. MR 521474 (80c:20062)
 [4]
 M. Newman, "Asymptotic formulas related to free products of cyclic groups," Math. Comp., v. 30, 1976, pp. 838846. MR 57 #5930. MR 0466047 (57:5930)
 [5]
 W. W. Stothers, "Free subgroups of the free product of cyclic groups," Math. Comp., v. 32, 1978, pp. 12741280. MR 502015 (80c:20037)
 [6]
 K. Wohlfahrt, "Über einen Satz von Dey und die Modulgruppe," Arch. Math., v. 29, 1977, pp. 455457. MR 0507036 (58:22326)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
20E06,
10D07,
20E07
Retrieve articles in all journals
with MSC:
20E06,
10D07,
20E07
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198106065229
PII:
S 00255718(1981)06065229
Article copyright:
© Copyright 1981
American Mathematical Society
