Rate of convergence of discretization in Chebyshev approximation

Authors:
C. B. Dunham and Jack Williams

Journal:
Math. Comp. **37** (1981), 135-139

MSC:
Primary 41A25; Secondary 30E10, 41A50, 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616366-X

MathSciNet review:
616366

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper treats, in a particularly simple fashion, the practical problem of the rate of convergence of discretization in real and complex Chebyshev approximation. Both linear and nonlinear approximations are discussed and, subject to certain conditions, quadratic convergence of the discretizations is obtained along with an explicit rate constant which can be estimated numerically.

**[1]**Bruce A. Chalmers,*On the rate of convergence of discretization in Chebyshev approximation*, SIAM J. Numer. Anal.**15**(1978), no. 3, 612–617. MR**0494836**, https://doi.org/10.1137/0715041**[2]**E. W. Cheney,*Introduction to approximation theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222517****[3a]**Charles B. Dunham,*Rational Chebyshev approximation on subsets*, J. Approximation Theory**1**(1968), 484–487. MR**0238002****[3b]**C. B. Dunham,*Approximation by alternating families on subsets*, Computing (Arch. Elektron. Rechnen)**9**(1972), 261–265 (English, with German summary). MR**0312686****[3c]**Charles B. Dunham,*Alternating Chebyshev approximation*, Trans. Amer. Math. Soc.**178**(1973), 95–109. MR**0318736**, https://doi.org/10.1090/S0002-9947-1973-0318736-8**[3d]**Charles B. Dunham,*Varisolvent Chebyshev approximation on subsets*, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 337–340. MR**0333534****[3e]**Charles B. Dunham,*Efficiency of Chebyshev approximation on finite subsets*, J. Assoc. Comput. Mach.**21**(1974), 311–313. MR**0367527**, https://doi.org/10.1145/321812.321825**[3f]**Charles B. Dunham,*Dependence of best rational Chebyshev approximations on the domain*, Canad. Math. Bull.**20**(1977), no. 4, 451–454. MR**0487190**, https://doi.org/10.4153/CMB-1977-066-1**[4]**S. Ellacott and Jack Williams,*Linear Chebyshev approximation in the complex plane using Lawson’s algorithm*, Math. Comput.**30**(1976), no. 133, 35–44. MR**0400652**, https://doi.org/10.1090/S0025-5718-1976-0400652-0**[5]**G. G. Lorentz,*Approximation of functions*, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR**0213785****[6]**E. B. Saff and R. S. Varga,*Nonuniqueness of best approximating complex rational functions*, Bull. Amer. Math. Soc.**83**(1977), no. 3, 375–377. MR**0433108**, https://doi.org/10.1090/S0002-9904-1977-14276-6

Retrieve articles in *Mathematics of Computation*
with MSC:
41A25,
30E10,
41A50,
65D15

Retrieve articles in all journals with MSC: 41A25, 30E10, 41A50, 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1981-0616366-X

Article copyright:
© Copyright 1981
American Mathematical Society