Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On a method of asymptotic evaluation of multiple integrals

Authors: R. Wong and J. P. McClure
Journal: Math. Comp. 37 (1981), 509-521
MSC: Primary 41A60; Secondary 41A63
Remarks: Math. Comp. 45, no. 171 (1969), pp. 197-198.
MathSciNet review: 628712
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, some of the formal arguments given by Jones and Kline [J. Math. Phys., v. 37, 1958, pp. 1-28] are made rigorous. In particular, the reduction procedure of a multiple oscillatory integral to a one-dimensional Fourier transform is justified, and a Taylor-type theorem with remainder is proved for the Dirac $ \delta $-function. The analyticity condition of Jones and Kline is now replaced by infinite differentiability. Connections with the asymptotic expansions of Jeanquartier and Malgrange are also discussed.

References [Enhancements On Off] (What's this?)

  • [1] Norman Bleistein and Richard A. Handelsman, Multidimensional stationary phase. An alternative derivation, SIAM J. Math. Anal. 6 (1975), 480–487. MR 0361570
  • [2] N. Bleistein & R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975.
  • [3] Nicholas Chako, Asymptotic expansions of double and multiple integrals occurring in diffraction theory, J. Inst. Math. Appl. 1 (1965), 372–422. MR 0204944
  • [4] R. Courant, Differential and Integral Calculus, vol. 2, Blackie & Son Ltd., London, 1970.
  • [5] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 0405513
  • [6] Joachim Focke, Asymptotische Entwicklungen mittels der Methode der stationären Phase, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 101 (1954), no. 3, 48 (German). MR 0068650
  • [7] I. M. Gel′fand and Z. Ya. Šapiro, Homogeneous functions and their extensions, Amer. Math. Soc. Transl. (2) 8 (1958), 21–85. MR 0094547
  • [8] I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Translated by Eugene Saletan, Academic Press, New York-London, 1964. MR 0166596
  • [9] Helmut A. Hamm, Remarks on asymptotic integrals, the polynomial of I. N. Bernstein and the Picard-Lefschetz monodromy, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 31–35. MR 0590055
  • [10] Pierre Jeanquartier, Développement asymptotique de la distribution de Dirac attachée à une fonction analytique, C. R. Acad. Sci. Paris Sér. A-B 201 (1970), A1159–A1161 (French). MR 0420695
  • [11] D. S. Jones, Generalised functions, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0217534
  • [12] Douglas S. Jones and Morris Kline, Asymptotic expansion of multiple integrals and the method of stationary phase, J. Math. and Phys. 37 (1958), 1–28. MR 0103379
  • [13] Bernard Malgrange, Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4) 7 (1974), 405–430 (1975) (French). MR 0372243
  • [14] F. W. J. Olver, Error bounds for stationary phase approximations, SIAM J. Math. Anal. 5 (1974), 19–29. MR 0333545
  • [15] I. M. Ryshik & I. S. Gradstein, Table of Integrals, Series, and Products, Academic Press, New York, 1965.
  • [16] R. T. Seeley, Distributions on Surfaces, Report T.W. 78, Mathematical Centre, Amsterdam, 1962.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A60, 41A63

Retrieve articles in all journals with MSC: 41A60, 41A63

Additional Information

Keywords: Asymptotic expansion, multi-dimensional stationary-phase approximation, Dirac $ \delta $-function, surface distribution
Article copyright: © Copyright 1981 American Mathematical Society