Evaluation of integrals of Howland type involving a Bessel function

Authors:
Chih Bing Ling and Ming Jing Wu

Journal:
Math. Comp. **38** (1982), 215-222

MSC:
Primary 65A05; Secondary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1982-0637299-X

MathSciNet review:
637299

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents a method of evaluation of four integrals of Howland type, which involve a Bessel function in the integrands. With the aid of tabulated values, they are evaluated to 10D. Two of the four Howland integrals needed in the evaluation are evaluated anew to 20D in order to provide adequate accuracy.

**[1]**A. ErdÉlyi et al.,*Higher Transcendental Functions*, vol. 1, Chapter 3, McGraw-Hill, New York, 1953.**[2]**J. W. L. Glaisher, ``Tables of , etc. to 32 places of decimals,''*Quart. J. Math.*, v. 45, 1914, pp. 141-158.**[3]**K. Knopp,*Infinite Series*, Hafner, New York, 1947.**[4]**C. B. Ling, ``Tables of values of 16 integrals of algebraic-hyperbolic type,''*MTAC.*, v. 11, 1957, pp. 160-166. MR**0090892 (19:886f)****[5]**C. B. Ling, ``Further evaluation of Howland integrals,''*Math. Comp.*, v. 32, 1978, pp. 900-904. MR**492047 (80f:65004)****[6]**C. B. Ling & J. Lin, ``A new method of evaluation of Howland integrals,''*Math. Comp.*, v. 25, 1971, pp. 331-337. MR**0295537 (45:4603)****[7]**Y. L. Luke,*Integrals of Bessel Functions*, McGraw-Hill, New York, 1962. MR**0141801 (25:5198)****[8]**C. W. Nelson, ``New tables of Howland's and related integrals,''*Math. Comp.*, v. 15, 1961, pp. 12-18. MR**0119442 (22:10203)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65A05,
65D20

Retrieve articles in all journals with MSC: 65A05, 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0637299-X

Keywords:
Howland integrals,
integrals involving Bessel function

Article copyright:
© Copyright 1982
American Mathematical Society