Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical methods for flows through porous media. I


Author: Michael E. Rose
Journal: Math. Comp. 40 (1983), 435-467
MSC: Primary 65M60; Secondary 76S05
DOI: https://doi.org/10.1090/S0025-5718-1983-0689465-6
MathSciNet review: 689465
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The degenerate parabolic equation

$\displaystyle \frac{{\partial u}}{{\partial t}} = \nabla \cdot \left( {\vert u{\vert^\nu }\nabla u} \right),\quad \nu \geqslant 1,$

has been used to model the flow of gas through a porous medium. Error estimates for continuous and discrete time finite element procedures to approximate the solution of this equation are proved, and several new regularity results are given.

References [Enhancements On Off] (What's this?)

  • [1] D. G. Aronson, "Regularity properties of flows through porous media," SIAM J. Appl. Math., v. 17, 1969, pp. 461-467. MR 0247303 (40:571)
  • [2] D. G. Aronson, "Regularity properties of flows through porous media: The interface," Arch. Rational Mech. Anal., v. 37, 1970, pp. 1-10. MR 0255996 (41:656)
  • [3] D. G. Aronson, "Regularity properties of flows through porous media: A counterexample," SIAM J. Appl. Math., v. 19, 1970, pp. 299-307. MR 0265774 (42:683)
  • [4] P. Benilan, Equations d'Evolution dans un Espace de Banach Quelconque et Applications, Doctoral Thesis, Orsay, 1972.
  • [5] P. Benilan, Personal communication.
  • [6] H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, American Elsevier, New York, and North-Holland, Amsterdam, 1973. MR 0348562 (50:1060)
  • [7] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, American Elsevier, New York, and North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [8] J. Douglas, Jr., Flow of Fluids in Porous Media, Proc. Internat. Congr. Math., Vol. 3, 1970, pp. 65-69. MR 0426607 (54:14546)
  • [9] J. Douglas, Jr., T. Dupont & L. Wahlbin, "Optimal $ {L^\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems," Math. Comp., v. 29, 1975, pp. 475-483. MR 0371077 (51:7298)
  • [10] B. F. Knerr, "The porous medium equation in one dimension," Trans. Amer. Math. Soc. (To appear.) MR 0492856 (58:11917)
  • [11] O. Ladyzhenskaya, V. A. Solonnikov & N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Vol. 23. Amer. Math. Soc., Providence, R. I., 1968.
  • [12] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.
  • [13] J. Nitsche, $ {L^\infty }$ Convergence of Finite Element Approximations, Proc. Second Conf. on Finite Elements, Rennes, France, 1975. MR 568857 (81e:65058)
  • [14] J. Nitsche, On $ {L^\infty }$ Convergence of the Finite Element Approximations to the Solution of a Nonlinear Boundary Value Problem, Conf. on Numerical Analysis, Dublin, Ireland, 1976. MR 513215 (81i:65094)
  • [15] O. A. Oleinik, On Some Degenerate Quasilinear Parabolic Equations, Seminari dell'Instituto Nazionole di Alta Mathematica, 1962-1963.
  • [16] O. A. Oleinik, A. S. Kalashnikov & Czou Yui-Lin, "The Cauchy problem and boundary problems for equations of the type of nonstationary filtration," Izv. Akad. Nauk. SSSR Ser. Mat., v. 22, 1958, pp. 667-704. (Russian) MR 0099834 (20:6271)
  • [17] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, American Elsevier, New York, and North-Holland, Amsterdam, 1977.
  • [18] M. E. Rose, Numerical Methods for a General Class of Porous Medium Equations, Argonne National Laboratory Report, Argonne, Illinois, 1979.
  • [19] M. E. Rose, "Numerical methods for flows through porous media-II," Comput. Math. Appl., v. 20, 1980, pp. 99-122.
  • [20] R. Scott, "Optimal $ {L^\infty }$-estimates for the finite element method on irregular meshes," Math. Comp., v. 30, 1976, pp. 681-697. MR 0436617 (55:9560)
  • [21] E. Stein & G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N. J., 1971. MR 0304972 (46:4102)
  • [22] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 0193578 (33:1797)
  • [23] M. F. Wheeler, 'A priori $ {L^2}$ error estimates for Galerkin approximations to parabolic partial differential equations," SIAM J. Numer. Anal., v. 10, 1973, pp. 723-759. MR 0351124 (50:3613)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65M60, 76S05

Retrieve articles in all journals with MSC: 65M60, 76S05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1983-0689465-6
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society