Product integration over infinite intervals. I. Rules based on the zeros of Hermite polynomials
Authors:
William E. Smith, Ian H. Sloan and Alex H. Opie
Journal:
Math. Comp. 40 (1983), 519535
MSC:
Primary 65D32
MathSciNet review:
689468
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The paper discusses both theoretical properties and practical implementation of product integration rules of the form where f is continuous, k is absolutely integrable, the nodes are roots of the Hermite polynomials , and the weights are chosen so that the rule is exact if f is any polynomial of degree . Convergence of the rule to the exact integral as is proved for a wide class of functions f and k (including singular or oscillatory functions k), and rates of convergence are estimated. The rules are shown to have the property of asymptotic positivity, and as a consequence exhibit good numerical stability. Numerical calculations for some practical cases are presented, which show the method to be computationally effective for integrands (including highly oscillatory ones) that decay suitably at infinity. Applications of the method to integration over are also discussed.
 [1]
Milton
Abramowitz and Irene
A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied
Mathematics Series, vol. 55, For sale by the Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
(29 #4914)
 [2]
N. S. Bakhvalov & L. G. Vasil'eva, "Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures," U.S.S.R. Comput. Math. and Math. Phys., v. 8, 1968, pp. 241249.
 [3]
M.
Blakemore, G.
A. Evans, and J.
Hyslop, Comparison of some methods for evaluating infinite range
oscillatory integrals, J. Computational Phys. 22
(1976), no. 3, 352–376. MR 0455300
(56 #13539)
 [4]
C.
W. Clenshaw, A note on the summation of Chebyshev
series, Math. Tables Aids Comput. 9 (1955), 118–120. MR 0071856
(17,194e), http://dx.doi.org/10.1090/S00255718195500718560
 [5]
David
Elliott and D.
F. Paget, Productintegration rules and their convergence,
Nordisk Tidskr. Informationsbehandling (BIT) 16 (1976),
no. 1, 32–40. MR 0405809
(53 #9601)
 [6]
David
Elliott and D.
F. Paget, The convergence of product integration rules, BIT
18 (1978), no. 2, 137–141. MR 0483319
(58 #3332)
 [7]
Géza
Freud, A contribution to the problem of weighted polynomial
approximation, Linear operators and approximation (Proc. Conf.,
Oberwolfach, 1971), Birkhäuser, Basel, 1972, pp. 431–447.
Internat. Ser. Numer. Math., Vol. 20. MR 0402358
(53 #6179)
 [8]
G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971, Problem 1, pp. 130131.
 [9]
Bruno
Gabutti, On high precision methods for
computing integrals involving Bessel functions, Math. Comp. 33 (1979), no. 147, 1049–1057. MR 528057
(80c:65048), http://dx.doi.org/10.1090/S00255718197905280575
 [10]
I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals Series and Products, Academic Press, New York, 1965.
 [11]
Gene
H. Golub and John
H. Welsch, Calculation of Gauss quadrature
rules, Math. Comp. 23 (1969), 221230;
addendum, ibid. 23 (1969), no. 106, loose microfiche suppl,
A1–A10. MR
0245201 (39 #6513), http://dx.doi.org/10.1090/S0025571869996471
 [12]
D.
R. Lehman, William
C. Parke, and L.
C. Maximon, Numerical evaluation of integrals containing a
spherical Bessel function by product integration, J. Math. Phys.
22 (1981), no. 7, 1399–1413. MR 626130
(82i:65014), http://dx.doi.org/10.1063/1.525061
 [13]
Benjamin
Muckenhoupt, Mean convergence of Hermite and Laguerre series. I,
II, Trans. Amer. Math. Soc. 147 (1970), 419431; ibid.
147 (1970), 433–460. MR 0256051
(41 #711)
 [14]
Paul
G. Nevai, Mean convergence of Lagrange interpolation. II, J.
Approx. Theory 30 (1980), no. 4, 263–276. MR 616953
(82i:41003), http://dx.doi.org/10.1016/00219045(80)900301
 [15]
D. F. Paget, Generalised Product Integration, Ph.D. thesis, University of Tasmania, 1976.
 [16]
T.
N. L. Patterson, On high precision methods for the evaluation of
Fourier integrals with finite and infinite limits, Numer. Math.
27 (1976/77), no. 1, 41–52. MR 0433932
(55 #6902)
 [17]
Ian
H. Sloan, On the numerical evaluation of singular integrals,
BIT 18 (1978), no. 1, 91–102. MR 0501799
(58 #19054)
 [18]
Ian
H. Sloan, On choosing the points in product integration, J.
Math. Phys. 21 (1980), no. 5, 1032–1039. MR 574876
(81g:65029), http://dx.doi.org/10.1063/1.524552
 [19]
Ian
H. Sloan and W.
E. Smith, Productintegration with the ClenshawCurtis and related
points. Convergence properties, Numer. Math. 30
(1978), no. 4, 415–428. MR 0494863
(58 #13646)
 [20]
Ian
H. Sloan and William
E. Smith, Product integration with the ClenshawCurtis points:
implementation and error estimates, Numer. Math. 34
(1980), no. 4, 387–401. MR 577405
(81g:65030), http://dx.doi.org/10.1007/BF01403676
 [21]
Ian
H. Sloan and William
E. Smith, Properties of interpolatory product integration
rules, SIAM J. Numer. Anal. 19 (1982), no. 2,
427–442. MR
650061 (83e:41032), http://dx.doi.org/10.1137/0719027
 [22]
William
E. Smith and Ian
H. Sloan, Productintegration rules based on the zeros of Jacobi
polynomials, SIAM J. Numer. Anal. 17 (1980),
no. 1, 1–13. MR 559455
(81h:65018), http://dx.doi.org/10.1137/0717001
 [23]
G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R. I., 1939.
 [24]
J.
V. Uspensky, On the convergence of quadrature
formulas related to an infinite interval, Trans. Amer. Math. Soc. 30 (1928), no. 3, 542–559. MR
1501444, http://dx.doi.org/10.1090/S00029947192815014448
 [25]
Andrew
Young, Approximate productintegration, Proc. Roy. Soc. London
Ser. A. 224 (1954), 552–561. MR 0063778
(16,179a)
 [1]
 M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards, Appl. Math. Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964. MR 0167642 (29:4914)
 [2]
 N. S. Bakhvalov & L. G. Vasil'eva, "Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadratures," U.S.S.R. Comput. Math. and Math. Phys., v. 8, 1968, pp. 241249.
 [3]
 M. Blakemore, G. A. Evans & J. Hyslop, "Comparison of some methods for evaluating infinite range oscillatory integrals," J. Comput. Phys., v. 22, 1976, pp. 352376. MR 0455300 (56:13539)
 [4]
 C. W. Clenshaw, "A note on the summation of Chebyshev series," MTAC, v. 9, 1955, pp. 118120. MR 0071856 (17:194e)
 [5]
 D. Elliott & D. F. Paget, "Productintegration rules and their convergence," BIT, v. 16, 1976, pp. 3240. MR 0405809 (53:9601)
 [6]
 D. Elliott & D. F. Paget, "The convergence of product integration rules," BIT, v. 18, 1978, pp. 137141. MR 0483319 (58:3332)
 [7]
 G. Freud, "A contribution to the problem of weighted polynomial approximation," Linear Operators and Approximation (P. L. Butzer, J.P. Kahane and B. Sz.Nagy, Eds.), Birkhäuser Verlag, Berlin, 1971, pp. 431447. MR 0402358 (53:6179)
 [8]
 G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971, Problem 1, pp. 130131.
 [9]
 B. Gabutti, "On high precision methods for computing integrals involving Bessel functions," Math. Comp., v. 33, 1979, pp. 10491057. MR 528057 (80c:65048)
 [10]
 I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals Series and Products, Academic Press, New York, 1965.
 [11]
 G. H. Golub & J. H. Welsch, "Calculation of Gaussian quadrature rules," Math. Comp., v. 23, 1969, pp. 221230. MR 0245201 (39:6513)
 [12]
 D. R. Lehman, W. C. Parke & L. C. Maximon, "Numerical evaluation of integrals containing a spherical Bessel function by product integration," J. Math. Phys., v. 22, 1981, pp. 13991413. MR 626130 (82i:65014)
 [13]
 B. Muckenhoupt, "Mean convergence of Hermite and Laguerre series. II," Trans. Amer. Math. Soc., v. 147, 1970, pp. 433460. MR 0256051 (41:711)
 [14]
 P. G. Nevai, "Mean convergence of Lagrange interpolation. II," J. Approx. Theory, v. 30, 1980, pp. 263276. MR 616953 (82i:41003)
 [15]
 D. F. Paget, Generalised Product Integration, Ph.D. thesis, University of Tasmania, 1976.
 [16]
 T. N. L. Patterson, "On high precision methods for the evaluation of Fourier integrals with finite and infinite limits," Numer. Math., v. 27, 1976, pp. 4152. MR 0433932 (55:6902)
 [17]
 I. H. Sloan, "On the numerical evaluation of singular integrals," BIT, v. 18, 1978, pp. 91102. MR 0501799 (58:19054)
 [18]
 I. H. Sloan, "On choosing the points in product integration," J. Math. Phys., v. 21, 1980, pp. 10321039. MR 574876 (81g:65029)
 [19]
 I. H. Sloan & W. E. Smith, "Product integration with the ClenshawCurtis and related points. Convergence properties," Numer. Math., v. 30, 1978, pp. 415428. MR 0494863 (58:13646)
 [20]
 I. H. Sloan & W. E. Smith, "Product integration with the ClenshawCurtis points: Implementation and error estimates," Numer. Math., v. 34, 1980, pp. 387401. MR 577405 (81g:65030)
 [21]
 I. H. Sloan & W. E. Smith, "Properties of interpolatory product integration rules," SIAM J. Numer. Anal., v. 19, 1982, pp. 427442. MR 650061 (83e:41032)
 [22]
 W. E. Smith & I. H. Sloan, "Productintegration rules based on the zeros of Jacobi polynomials," SIAM J. Numer. Anal., v. 17, 1980, pp. 113. MR 559455 (81h:65018)
 [23]
 G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R. I., 1939.
 [24]
 J. V. Uspensky, "On the convergence of quadrature formulas related to an infinite interval," Trans. Amer. Math. Soc., v. 30, 1928, pp. 542559. MR 1501444
 [25]
 A. Young, "Approximate product integration," Proc. Roy. Soc. London Ser. A, v. 224, 1954, pp. 552561. MR 0063778 (16:179a)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D32
Retrieve articles in all journals
with MSC:
65D32
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198306894681
PII:
S 00255718(1983)06894681
Keywords:
Numerical integration,
infinite interval,
product integration,
interpolation,
Hermite polynomials
Article copyright:
© Copyright 1983
American Mathematical Society
