Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Applications of a computer implementation of Poincaré's theorem on fundamental polyhedra

Author: Robert Riley
Journal: Math. Comp. 40 (1983), 607-632
MSC: Primary 20H10; Secondary 11F06, 20-04, 22E40, 51M20, 57N10
MathSciNet review: 689477
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Poincaré's Theorem asserts that a group $ \Gamma $ of isometries of hyperbolic space $ \mathbb{H}$ is discrete if its generators act suitably on the boundary of some polyhedron in $ \mathbb{H}$, and when this happens a presentation of $ \Gamma $ can be derived from this action. We explain methods for deducing the precise hypotheses of the theorem from calculation in $ \Gamma $ when $ \Gamma $ is "algorithmically defined", and we describe a file of Fortran programs that use these methods for groups $ \Gamma $ acting on the upper half space model of hyperbolic 3-space $ {\mathbb{H}^3}$. We exhibit one modest example of the application of these programs, and we summarize computations of repesentations of groups $ {\text{PSL}}(2,\mathcal{O})$ where $ \mathcal{O}$ is an order in a complex quadratic number field.

References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR 725161
  • [2] A. F. Beardon, The geometry of discrete groups, Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975), Academic Press, London, 1977, pp. 47–72. MR 0474012
  • [3] Alan F. Beardon and Bernard Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1–12. MR 0333164
  • [4] Luigi Bianchi, Opere. Vol. I, Parte prima, A cura dell’Unione Matematica Italiana e col contributo del Consiglio Nazionale delle Ricerche, Edizioni Cremonese della Casa Editrice Perrella, Roma, 1952 (Italian). MR 0051755
  • [5] Harvey Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. MR 0133281
  • [6] Troels Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739–749. MR 0427627
  • [7] Bernard Maskit, On Poincaré’s theorem for fundamental polygons, Advances in Math. 7 (1971), 219–230. MR 0297997
  • [8] Robert Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281–288. MR 0412416
  • [9] Robert Riley, Discrete parabolic representations of link groups, Mathematika 22 (1975), no. 2, 141–150. MR 0425946
  • [10] Robert Riley, An elliptical path from parabolic representations to hyperbolic structures, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 99–133. MR 547459
  • [11] R. Riley, Seven excellent knots, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 81–151. MR 662430
  • [12] Herbert Seifert, Komplexe mit Seitenzuordnung, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 6 (1975), 49–80 (German). MR 0383219
  • [13] J. Sommer, Introduction à la Théorie des Nombres Algébriques, Paris, 1911.
  • [14] Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 0284516
  • [15] W. Thurston, The geometry and topology of 3-manifolds. (To appear.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20H10, 11F06, 20-04, 22E40, 51M20, 57N10

Retrieve articles in all journals with MSC: 20H10, 11F06, 20-04, 22E40, 51M20, 57N10

Additional Information

Keywords: Poincaré's Theorem on fundamental polyhedra, fundamental domain, discrete group, group presentation, Kleinian group, Bianchi group, hyperbolic space
Article copyright: © Copyright 1983 American Mathematical Society