Further convergence results for the weighted Galerkin method of numerical solution of Cauchy-type singular integral equations

Author:
N. I. Ioakimidis

Journal:
Math. Comp. **41** (1983), 79-85

MSC:
Primary 65R20; Secondary 45E05, 45L10

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701625-4

MathSciNet review:
701625

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The convergence of the weighted Galerkin method (based on Chebyshev or Jacobi polynomials) for the direct numerical solution of one-dimensional, real Cauchy-type singular integral equations of the first and of the second kind on a finite interval is proved under sufficiently weak continuity assumptions for the kernels and the right-side functions of the integral equations.

**[1]**Kendall E. Atkinson,*A survey of numerical methods for the solution of Fredholm integral equations of the second kind*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR**0483585****[2]**Christopher T. H. Baker,*The numerical treatment of integral equations*, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR**0467215****[3]**A. V. Džiškariani,*On the solution of singular integral equations by approximate projective methods*, Zh. Vychisl. Mat. i Mat. Fiz.**19**(1979), no. 5, 1149–1161, 1356 (Russian). MR**550102****[4]**David Elliott and D. F. Paget,*“On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals” (Numer. Math. 23 (1975), 311–319): an addendum*, Numer. Math.**25**(1975/76), no. 3, 287–289. MR**0411131**, https://doi.org/10.1007/BF01399417**[5]**F. Erdogan, G. D. Gupta, and T. S. Cook,*Numerical solution of singular integral equations*, Mechanics of fracture, Vol. 1, Noordhoff, Leiden, 1973, pp. 368–425. MR**0471394****[6]**J. A. Fromme and M. A. Golberg,*Numerical solution of a class of integral equations arising in two-dimensional aerodynamics*, Solution methods for integral equations, Math. Concepts Methods Sci. Engrg., vol. 18, Plenum, New York-London, 1979, pp. 109–146. MR**564266****[7]**F. D. Gakhov,*Boundary value problems*, Translation edited by I. N. Sneddon, Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1966. MR**0198152****[8]**M. A. Golberg, "Galerkin's method for operator equations with non-negative index--with application to Cauchy singular integral equations,"*J. Math. Anal. Appl.*(To appear.)**[9]**N. I. Ioakimidis,*On the weighted Galerkin method of numerical solution of Cauchy type singular integral equations*, SIAM J. Numer. Anal.**18**(1981), no. 6, 1120–1127. MR**639002**, https://doi.org/10.1137/0718076**[10]**Steen Krenk,*On quadrature formulas for singular integral equations of the first and the second kind*, Quart. Appl. Math.**33**(1975/76), no. 3, 225–232. MR**0448967**, https://doi.org/10.1090/S0033-569X-1975-0448967-5**[11]**Peter Linz,*An analysis of a method for solving singular integral equations*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 3, 329–337. MR**0483594****[12]**Theodore J. Rivlin,*An introduction to the approximation of functions*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1969. MR**0249885****[13]**G. Szegö,*Orthogonal Polynomials*, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1959.**[14]**K. S. Thomas,*Galerkin methods for singular integral equations*, Math. Comp.**36**(1981), no. 153, 193–205. MR**595052**, https://doi.org/10.1090/S0025-5718-1981-0595052-9

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45E05,
45L10

Retrieve articles in all journals with MSC: 65R20, 45E05, 45L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0701625-4

Article copyright:
© Copyright 1983
American Mathematical Society