Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Parameters for integrating periodic functions of several variables


Author: Seymour Haber
Journal: Math. Comp. 41 (1983), 115-129
MSC: Primary 65D32; Secondary 41A55
MathSciNet review: 701628
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A number-theoretical method for numerical integration of periodic functions of several variables was developed some years ago. This paper presents lists of numerical parameters to be used in implementing that method. The parameters define quadrature formulas for functions of 2, 3, ..., 8 variables; error bounds for those formulas are also tabulated. The derivation of the parameters and error bounds is described.


References [Enhancements On Off] (What's this?)

  • [1] N. S. Bahvalov, Approximate computation of multiple integrals, Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 1959 (1959), no. 4, 3–18 (Russian). MR 0115275
  • [2] F. Benford, "The law of anomalous numbers," Proc. Amer. Philos. Soc., v. 78, 1938, pp. 551-572.
  • [3] R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek & J. H. Schaibly, "Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I. Theory," J. Chem. Phys., v. 59, 1973, pp. 3873-3878.
  • [4] J. P. Daudey, S. Diner, and R. Savinelli, Numerical integration techniques for quantum chemistry. The role of periodization in the calculation of electronic integrals, Theoret. Chim. Acta 37 (1975), no. 4, 275–283. MR 0446241
  • [5] Seymour Haber, Numerical evaluation of multiple integrals, SIAM Rev. 12 (1970), 481–526. MR 0285119
  • [6] Seymour Haber, Experiments on optimal coefficients, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 11–37. MR 0391479
  • [7] Seymour Haber, A number-theoretic problem in numerical approximation of integrals, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 473–480. MR 602754
  • [8] Edmund Hlawka, Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962), 140–151 (German). MR 0143329
  • [9] Edmund Hlawka, Uniform distribution modulo 1 and numerical analysis, Compositio Math. 16 (1964), 92–105 (1964). MR 0175278
  • [10] Loo Keng Hua and Yuan Wang, Applications of number theory to numerical analysis, Springer-Verlag, Berlin-New York; Kexue Chubanshe (Science Press), Beijing, 1981. Translated from the Chinese. MR 617192
  • [11] P. Keast, Multi-Dimensional Quadrature Formulae, Tech. Rep. No. 40, Department of Computer Science and Scarborough College, University of Toronto, February 1972.
  • [12] P. Keast, Optimal parameters for multidimensional integration, SIAM J. Numer. Anal. 10 (1973), 831–838. MR 0353636
  • [13] N. M. Korobov, Approximate evaluation of repeated integrals, Dokl. Akad. Nauk SSSR 124 (1959), 1207–1210 (Russian). MR 0104086
  • [14] N. M. Korobov, Number-Theoretic Methods of Approximate Analysis, Fizmatgiz, Moscow, 1963. (Russian)
  • [15] N. M. Korobov, "Some problems in the theory of Diophantine approximation," Uspekhi Mat. Nauk, v. 22, 1967, pp. 83-108 = Russian Math. Surveys, v. 22, 1967, pp. 80-108.
  • [16] Dominique Maisonneuve, Recherche et utilisation des “bons treillis”. Programmation et résultats numériques, Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971) Academic Press, New York, 1972, pp. 121–201 (French, with English summary). MR 0343529
  • [17] Harald Niederreiter, Existence of good lattice points in the sense of Hlawka, Monatsh. Math. 86 (1978/79), no. 3, 203–219. MR 517026, 10.1007/BF01659720
  • [18] Harald Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041. MR 508447, 10.1090/S0002-9904-1978-14532-7
  • [19] A. I. Saltykov, Tables for evaluating multiple integrals by the method of optimal coefficients, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 181–186 (Russian). MR 0150976
  • [20] I. F. Šarygin, Lower bounds for the error of quadrature formulas on classes of functions, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 370–376 (Russian). MR 0150952
  • [21] K. Zakrzewska, J. Dudek & N. Nazarewicz, "A numerical calculation of multi-dimensional integrals," Comput. Phys. Commun., v. 14, 1978, pp. 299-309.
  • [22] S. C. Zaremba, Good lattice points, discrepancy, and numerical integration, Ann. Mat. Pura Appl. (4) 73 (1966), 293–317. MR 0218018
  • [23] S. K. Zaremba, Good lattice points modulo composite numbers, Monatsh. Math. 78 (1974), 446–460. MR 0371845

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D32, 41A55

Retrieve articles in all journals with MSC: 65D32, 41A55


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1983-0701628-X
Article copyright: © Copyright 1983 American Mathematical Society