The maximum of a quasismooth function

Authors:
J. Ernest Wilkins and Theodore R. Hatcher

Journal:
Math. Comp. **41** (1983), 573-589

MSC:
Primary 26D20

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717704-1

MathSciNet review:
717704

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let Z be the class of real-valued functions, defined and continuous on the closed interval , such that and for all and in *I*. Let . We will prove that .

**[1]**Yu. A. Brudnyi, "On the maximum modulus of a quasi-smooth function,"*Uspehi Mat. Nauk*(*N. S.*), v. 12. no. 4(76), 1957, pp. 273-275. (Russian) MR**19**,733. MR**0089876 (19:733b)****[2]**L. M. Graves,*The Theory of Functions of Real Variables*, McGraw-Hill, New York, 1946, p. 122. MR**8**, 319. MR**0018708 (8:319d)****[3]**I. P. Sokolova, "The maximum of the modulus of a function that satisfies Zygmund's condition,"*Studies in the Theory of Functions of Several Real Variables*, Jaroslav. Gos. Univ., Yaroslavl, 1976, pp. 66-71. (Russian) MR**58**#28343. MR**0580933 (58:28343)****[4]**A. F. Timan, "Quasi-smooth functions,"*Dokl. Akad. Nauk SSSR*(*N.S.*). v. 70, 1950, pp. 961-963. (Russian) MR**11**,422. MR**0033321 (11:422d)****[5]**A. F. Timan, "Quasi-smooth functions,"*Uspehi Mat. Nauk*(*N.S.*), v. 5, no. 3(37). 1950, pp. 128-130. (Russian) MR**12**, 13. MR**0035801 (12:13c)****[6]**A. F. Timan, "On quasi-smooth functions,"*Izv. Akad. Nauk SSSR Ser. Mat.*, v. 15, 1951, pp. 243-254. (Russian) MR**13**, 17. MR**0041899 (13:17e)****[7]**A. Zygmund, "Smooth functions,"*Duke Math. J.*, v. 12, 1945, pp. 47-76. MR**7**, 60. MR**0012691 (7:60b)****[8]**APEX-III*Reference Manual*, Version 1.2, Control Data Corporation Manual #76070000, March 12, 1979.

Retrieve articles in *Mathematics of Computation*
with MSC:
26D20

Retrieve articles in all journals with MSC: 26D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717704-1

Article copyright:
© Copyright 1983
American Mathematical Society