The maximum of a quasismooth function

Authors:
J. Ernest Wilkins and Theodore R. Hatcher

Journal:
Math. Comp. **41** (1983), 573-589

MSC:
Primary 26D20

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717704-1

MathSciNet review:
717704

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let Z be the class of real-valued functions, defined and continuous on the closed interval , such that and for all and in *I*. Let . We will prove that .

**[1]**Yu. A. Brudnyĭ,*On the maximum modulus of a quasi-smooth function*, Uspehi Mat. Nauk (N.S.)**12**(1957), no. 4(76), 273–275 (Russian). MR**0089876****[2]**Lawrence M. Graves,*The Theory of Functions of Real Variables*, McGraw-Hill Book Company, Inc., New York, 1946. MR**0018708****[3]**I. P. Sokolova,*The maximum of the modulus of a function that satisfies Zygmund’s condition*, Studies in the theory of functions of several real variables (Russian), Jaroslav. Gos. Univ., Yaroslavl, 1976, pp. 66–71 (Russian). MR**0580933****[4]**A. F. Timan,*Quasi-smooth functions*, Doklady Akad. Nauk SSSR (N.S.)**70**(1950), 961–963 (Russian). MR**0033321****[5]**A. F. Timan,*Quasi-smooth functions*, Uspehi Matem. Nauk (N.S.)**5**(1950), no. 3(37), 128–130 (Russian). MR**0035801****[6]**A. F. Timan,*On quasi-smooth functions*, Izvestiya Akad. Nauk SSSR. Ser. Mat.**15**(1951), 243–254 (Russian). MR**0041899****[7]**A. Zygmund,*Smooth functions*, Duke Math. J.**12**(1945), 47–76. MR**0012691****[8]**APEX-III*Reference Manual*, Version 1.2, Control Data Corporation Manual #76070000, March 12, 1979.

Retrieve articles in *Mathematics of Computation*
with MSC:
26D20

Retrieve articles in all journals with MSC: 26D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0717704-1

Article copyright:
© Copyright 1983
American Mathematical Society