Analysis of mixed finite elements methods for the Stokes problem: a unified approach

Author:
Rolf Stenberg

Journal:
Math. Comp. **42** (1984), 9-23

MSC:
Primary 76-08; Secondary 76D07

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725982-9

MathSciNet review:
725982

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a method for the analysis of mixed finite element methods for the Stokes problem in the velocity-pressure formulation. A technical "macroelement condition", which is sufficient for the classical Babuška-Brezzi inequality to be valid, is introduced. Using this condition,we are able to verify the stability, and optimal order of convergence, of several known mixed finite element methods.

**[1]**I. Babuška, "The finite element method with Lagrangian multipliers,"*Numer. Math.*, v. 20, 1973, pp. 179-192. MR**0359352 (50:11806)****[2]**M. Bercovier, "Perturbation of mixed variational problems. Application to mixed finite element methods",*RAIRO Anal. Numer.*, v. 12, 1978, pp. 211-236. MR**509973 (80b:49031)****[3]**M. Bercovier & M. Engelman, "A finite element method for the numerical solution of viscous incompressible flows".*J. Comput. Phys.*, v. 30, 1979, pp. 181-201. MR**528199 (80c:65200)****[4]**M. Bercovier & O. Pironneau, "Error estimates for finite element solution of the Stokes problem in the primitive variables,"*Numer. Math.*, v. 33, 1979, pp. 211-224. MR**549450 (81g:65145)****[5]**F. Brezzi, "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers."*RAIRO Ser. Rouge*, v. 8, 1974, pp. 129-151. MR**0365287 (51:1540)****[6]**P. G. Ciarlet,*The Finite Element Method fur Elliptic Problems*, North-Holland, Amsterdam. 1978. MR**0520174 (58:25001)****[7]**P. G. Ciarlet & P. A. Raviart, "Interpolation theory over curved elements, with applications to finite element methods,"*Comput. Methods Appl. Mech. Engrg.*, v. 1, 1972, pp. 217-249. MR**0375801 (51:11991)****[8]**P. Clement, "Approximation by finite elements using local regularization."*RAIRO Ser. Rouge*, v. 9, 1975, pp. 77-84. MR**0400739 (53:4569)****[9]**M. Crouzeix & P. A. Raviart, "Conforming and nonconforming finite element methods for solving the stationary Stokes equations,"*RAIRO Ser. Rouge*, v. 7, 1973, pp. 33-76. MR**0343661 (49:8401)****[10]**M. Engelman, R. Sani, P. Gresho & M Bercovier, "Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements,"*Internat. J. Numer. Methods Fluids*, v. 2, 1982, pp. 25-42. MR**643172 (83a:76006)****[11]**V. Girault & P. A. Raviart,*Finite Element Approximation of the Navier-Stokes Equations*, Lecture Notes in Math., Vol. 749. Springer, Berlin. 1979. MR**548867 (83b:65122)****[12]**P. Hood & C. Taylor, "Navier-Stokes equations using mixed interpolation,"*Finite Element Methods in Flow Problems*(J. T. Oden. ed.), UAH Press, Huntsville, Alabama, 1974, pp. 121-131.**[13]**T. J. Hughes, W. K. Liu & A. Brooks, "Finite element analysis of incompressible viscous flows by the penalty function formulation,"*J. Comput. Phys.*, v. 30, 1979, pp. 1-60. MR**524162 (80b:76008)****[14]**P. Huyakorn. C. Taylor, R. Lee & P. Gresho, "A comparison of various mixed-interpolation finite elements for the Navier-Stokes equations,"*Comput. & Fluids*, v. 6, 1978, pp. 25-35.**[15]**C. Johnson & J. Pitkäranta, "Analysis of some mixed finite element methods related to reduced integration."*Math. Comp.*, v. 38, 1982, pp. 375-400. MR**645657 (83d:65287)****[16]**P. Le Tallec, "Compatibility condition and existence results in discrete finite incompressible elasticity,"*Comput. Methods Appl. Mech. Engrg.*, v. 27, 1981, pp. 239-259. MR**629739 (82j:73036)****[17]**D. Malkus & T. J. Hughes, "Mixed finite element methods--reduced and selective integration techniques: a unification of concepts,"*Comput. Mehtods Appl. Mech. Engrg.*, v. 15, 1978, pp. 63-81.**[18]**L. Mansfield, "Finite element subspaces with optimal rates of convergence for the stationary Stokes problem."*RAIRO Anal. Numer.*, v. 16, 1982, pp. 49-66. MR**648745 (83d:65294)****[19]**J. Pitkäranta, "On a mixed finite element method for the Stokes problem in .*RAIRO Anal. Numer.*, v. 16, 1982, pp. 275-291. MR**672419 (84i:76031)****[20]**J. Pitkäranta & R. Stenberg, "Analysis of some mixed finite element methods for plane elasticity equations,"*Math. Comp.*, v. 41, 1983, pp. 399-423. MR**717693 (85b:65099)****[21]**R. Sani, P. Gresho, R. Lee & D. Griffiths, "The cause and cure (?) of the spurious pressures generated by certain GFEM solutions of the incompressible Navier-Stokes equations,"*Internat. J. Numer. Methods Fluids*, v. 1, 1981, Part 1, pp. 17-44; Part 2, pp. 171-204. MR**621064 (83i:65083b)****[22]**R. Stenberg,*Mixed Finite Element Methods for Two Problems in Elasticity Theory and Fluid Mechanics*, Licentiate thesis, Helsinki University of Technology, 1981.**[23]**R. Verfürt,*Error Estimates for a Mixed Finite Element Approximation of the Stokes Equations*, Ruhr-Universität Bochum, 1982. (Preprint.)

Retrieve articles in *Mathematics of Computation*
with MSC:
76-08,
76D07

Retrieve articles in all journals with MSC: 76-08, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725982-9

Article copyright:
© Copyright 1984
American Mathematical Society