Explicit estimates for and

Author:
Kevin S. McCurley

Journal:
Math. Comp. **42** (1984), 287-296

MSC:
Primary 11N56

DOI:
https://doi.org/10.1090/S0025-5718-1984-0726005-8

MathSciNet review:
726005

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the sum of the logarithms of the primes not exceeding *x* that are congruent to *l* modulo 3, where *l* is 1 or 2. By the prime number theorem for arithmetic progressions, as . Using information concerning zeros of Dirichlet *L*-functions, we prove explicit numerical bounds for of the form , .

**[1]**Richard P. Brent,*On the zeros of the Riemann zeta function in the critical strip*, Math. Comp.**33**(1979), no. 148, 1361–1372. MR**537983**, https://doi.org/10.1090/S0025-5718-1979-0537983-2**[2]**D. Davies,*An approximate functional equation for Dirichlet 𝐿-functions*, Proc. Roy. Soc. Ser. A**284**(1965), 224–236. MR**0173352****[3]**Kevin S. McCurley,*Explicit zero-free regions for Dirichlet 𝐿-functions*, J. Number Theory**19**(1984), no. 1, 7–32. MR**751161**, https://doi.org/10.1016/0022-314X(84)90089-1**[4]**Kevin S. McCurley,*Explicit estimates for the error term in the prime number theorem for arithmetic progressions*, Math. Comp.**42**(1984), no. 165, 265–285. MR**726004**, https://doi.org/10.1090/S0025-5718-1984-0726004-6**[5]**J. Barkley Rosser and Lowell Schoenfeld,*Sharper bounds for the Chebyshev functions 𝜃(𝑥) and 𝜓(𝑥)*, Math. Comp.**29**(1975), 243–269. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR**0457373**, https://doi.org/10.1090/S0025-5718-1975-0457373-7**[6]**Royal Society of London, Mathematical Tables Committee, Royal Society Depository of Unpublished Mathematical Tables, Table 83.**[7]**Lowell Schoenfeld,*Sharper bounds for the Chebyshev functions 𝜃(𝑥) and 𝜓(𝑥). II*, Math. Comp.**30**(1976), no. 134, 337–360. MR**0457374**, https://doi.org/10.1090/S0025-5718-1976-0457374-X**[8]**Robert Spira,*Calculation of Dirichlet 𝐿-functions*, Math. Comp.**23**(1969), 489–497. MR**0247742**, https://doi.org/10.1090/S0025-5718-1969-0247742-X

Retrieve articles in *Mathematics of Computation*
with MSC:
11N56

Retrieve articles in all journals with MSC: 11N56

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0726005-8

Article copyright:
© Copyright 1984
American Mathematical Society