The mean values of totally real algebraic integers
Author:
C. J. Smyth
Journal:
Math. Comp. 42 (1984), 663681
MSC:
Primary 11R80; Secondary 11R04, 11S05
MathSciNet review:
736460
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the pth root of the mean absolute values of the pth powers of a totally real algebraic integer . For each fixed we study the set of such . We show that its structure is as follows: on the nonnegative real line it consists of some isolated points, followed by a small interval in which its structure is as yet undetermined. Beyond this small interval, it is everywhere dense.
 [1]
David
W. Boyd, Small Salem numbers, Duke Math. J.
44 (1977), no. 2, 315–328. MR 0453692
(56 #11952)
 [2]
Veikko
Ennola, Conjugate algebraic integers in an
interval, Proc. Amer. Math. Soc.
53 (1975), no. 2,
259–261. MR 0382219
(52 #3104), http://dx.doi.org/10.1090/S00029939197503822197
 [3]
Henry
W. Gould, Combinatorial identities, Henry W. Gould,
Morgantown, W.Va., 1972. A standardized set of tables listing 500 binomial
coefficient summations. MR 0354401
(50 #6879)
 [4]
I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1965.
 [5]
D. H. Greene & D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhäuser, Boston, 1981.
 [6]
G.
H. Hardy, J.
E. Littlewood, and G.
Pólya, Inequalities, Cambridge, at the University
Press, 1952. 2d ed. MR 0046395
(13,727e)
 [7]
John
Hunter, A generalization of the inequality of the
arithmeticgeometric means, Proc. Glasgow Math. Assoc.
2 (1956), 149–158. MR 0075984
(17,828g)
 [8]
Leonard
Lewin, Polylogarithms and associated functions, NorthHolland
Publishing Co., New YorkAmsterdam, 1981. With a foreword by A. J. Van der
Poorten. MR
618278 (83b:33019)
 [9]
M. J. McAuley, Topics in JFields and a Diameter Problem, M. Sc. thesis, University of Adelaide, 1981.
 [10]
D.
S. Mitrinović, Analytic inequalities, SpringerVerlag,
New YorkBerlin, 1970. In cooperation with P. M. Vasić. \tseries Die
Grundlehren der mathematischen Wissenschaften, Band 165. MR 0274686
(43 #448)
 [11]
Raphael
M. Robinson, Intervals containing infinitely many sets of conjugate
algebraic integers, Studies in mathematical analysis and related
topics, Stanford Univ. Press, Stanford, Calif., 1962,
pp. 305–315. MR 0144892
(26 #2433)
 [12]
Raphael
M. Robinson, Algebraic equations with span less
than 4, Math. Comp. 18 (1964), 547–559. MR 0169374
(29 #6624), http://dx.doi.org/10.1090/S0025571819640169374X
 [13]
Carl
Ludwig Siegel, The trace of totally positive and real algebraic
integers, Ann. of Math. (2) 46 (1945), 302–312.
MR
0012092 (6,257a)
 [14]
C.
J. Smyth, On the measure of totally real algebraic integers,
J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 2,
137–149. MR
607924 (82j:12002a)
 [15]
C.
J. Smyth, On the measure of totally real
algebraic integers. II, Math. Comp.
37 (1981), no. 155, 205–208. MR 616373
(82j:12002b), http://dx.doi.org/10.1090/S00255718198106163737
 [1]
 D. W. Boyd, "Small Salem numbers," Duke Math. J., v. 44, 1977, pp. 315328. MR 0453692 (56:11952)
 [2]
 V. Ennola, "Conjugate algebraic integers in an interval," Proc. Amer. Math. Soc., v. 53, 1975, pp. 259261. MR 0382219 (52:3104)
 [3]
 H. Gould, Combinatorial Identities, Morgantown Printing Co., 1972. MR 0354401 (50:6879)
 [4]
 I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1965.
 [5]
 D. H. Greene & D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhäuser, Boston, 1981.
 [6]
 G. H. Hardy, J. E. Littlewood & G. Polya, Inequalities, 2nd ed., Cambridge Univ. Press, 1952. MR 0046395 (13:727e)
 [7]
 J. Hunter, "A generalisation of the inequality of the arithmeticgeometric means," Glasgow Math. J., v. 1, 1958, pp. 149158. MR 0075984 (17:828g)
 [8]
 L. Lewin, Polylogarithms and Associated Functions, NorthHolland, Amsterdam, 1981. MR 618278 (83b:33019)
 [9]
 M. J. McAuley, Topics in JFields and a Diameter Problem, M. Sc. thesis, University of Adelaide, 1981.
 [10]
 D. S. Mitrinović, Analytic Inequalities, Springer, New York, 1970. MR 0274686 (43:448)
 [11]
 R. M. Robinson, "Intervals containing infinitely many sets of conjugate algebraic integers," Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Polya, Stanford, 1962, pp. 305315. MR 0144892 (26:2433)
 [12]
 R. M. Robinson, "Algebraic equations with span less than 4," Math. Comp., v. 10, 1964, pp. 549559. MR 0169374 (29:6624)
 [13]
 C. L. Siegel, "The trace of totally positive and real algebraic integers," Ann. of Math., v. 46, 1945, pp. 302312. MR 0012092 (6:257a)
 [14]
 C. J. Smyth, "On the measure of totally real algebraic integers," J. Austral. Math. Soc. Ser. A, v. 30, 1980, pp. 137149. MR 607924 (82j:12002a)
 [15]
 C. J. Smyth, "On the measure of totally real algebraic integers. II," Math. Comp., v. 37, 1981, pp. 205208. MR 616373 (82j:12002b)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11R80,
11R04,
11S05
Retrieve articles in all journals
with MSC:
11R80,
11R04,
11S05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198407364605
PII:
S 00255718(1984)07364605
Article copyright:
© Copyright 1984
American Mathematical Society
