Approximation properties of quadrature methods for Volterra integral equations of the first kind

Author:
P. P. B. Eggermont

Journal:
Math. Comp. **43** (1984), 455-471

MSC:
Primary 65R20; Secondary 45L05

MathSciNet review:
758194

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a unifying analysis of quadrature methods for Volterra integral equations of the first kind that are zero-stable and have an asymptotic repetition factor. We show that such methods are essentially collocation-projection methods with underlying subspaces that have nice approximation properties, and which are stable as projection methods. This is used to derive asymptotically optimal error estimates under minimal smoothness conditions. The class of quadrature methods covered includes the cyclic linear multistep and the reducible quadrature methods, but not (really) Runge-Kutta methods.

**[1]**Celia Andrade and S. McKee,*On optimal high accuracy linear multistep methods for first kind Volterra integral equations*, BIT**19**(1979), no. 1, 1–11. MR**530109**, 10.1007/BF01931215**[2]**K. Atkinson and A. Sharma,*A partial characterization of poised Hermite-Birkhoff interpolation problems*, SIAM J. Numer. Anal.**6**(1969), 230–235. MR**0264828****[3]**Melvin S. Berger,*Nonlinearity and functional analysis*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis; Pure and Applied Mathematics. MR**0488101****[4]**Hermann Brunner,*A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations*, J. Comput. Appl. Math.**8**(1982), no. 3, 213–229. MR**682889**, 10.1016/0771-050X(82)90044-4**[5]**P. P. B. Eggermont,*Collocation for Volterra integral equations of the first kind with iterated kernel*, SIAM J. Numer. Anal.**20**(1983), no. 5, 1032–1048. MR**714698**, 10.1137/0720073**[6]**P. P. B. Eggermont,*Collocation as a projection method and superconvergence for Volterra integral equations of the first kind*, Treatment of integral equations by numerical methods (Durham, 1982), Academic Press, London, 1982, pp. 131–138. MR**755348****[7]**Charles J. Gladwin,*Quadrature rule methods for Volterra integral equations of the first kind*, Math. Comp.**33**(1979), no. 146, 705–716. MR**521284**, 10.1090/S0025-5718-1979-0521284-2**[8]**C. J. Gladwin,*On optimal integration methods for Volterra integral equations of the first kind*, Math. Comp.**39**(1982), no. 160, 511–518. MR**669643**, 10.1090/S0025-5718-1982-0669643-1**[9]**P. A. W. Holyhead, S. McKee, and P. J. Taylor,*Multistep methods for solving linear Volterra integral equations of the first kind*, SIAM J. Numer. Anal.**12**(1975), no. 5, 698–711. MR**0413564****[10]**Malcolm S. Keech,*A third order, semi-explicit method in the numerical solution of first kind Volterra integral equations*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 3, 312–320. MR**0474918****[11]**M. A. Krasnosel′skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskii, and V. Ya. Stetsenko,*Approximate solution of operator equations*, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the Russian by D. Louvish. MR**0385655****[12]**George G. Lorentz, Kurt Jetter, and Sherman D. Riemenschneider,*Birkhoff interpolation*, Encyclopedia of Mathematics and its Applications, vol. 19, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR**680938****[13]**S. McKee,*Best convergence rates of linear multistep methods for Volterra first kind equations*, Computing**21**(1978/79), no. 4, 343–358 (English, with German summary). MR**620379**, 10.1007/BF02248734**[14]**Theodor Meis,*Eine spezielle Integralgleichung erster Art*, Numerical treatment of differential equations (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1976) Springer, Berlin, 1978, pp. 106–120. Lecture Notes in Math., Vol. 631 (German). MR**0487337****[15]**James L. Phillips,*The use of collocation as a projection method for solving linear operator equations*, SIAM J. Numer. Anal.**9**(1972), 14–28. MR**0307516****[16]**Friedrich Stummel,*Diskrete Konvergenz linearer Operatoren. I*, Math. Ann.**190**(1970/71), 45–92 (German). MR**0291870****[17]**Friedrich Stummel,*Diskrete Konvergenz linearer Operatoren. II*, Math. Z.**120**(1971), 231–264 (German). MR**0291871****[18]**Friedrich Stummel,*Diskrete Konvergenz linearer Operatoren. III*, Linear operators and approximation (Proc. Conf., Oberwolfach, 1971), Birkhäuser, Basel, 1972, pp. 196–216. Internat. Ser. Numer. Math., Vol. 20 (German). MR**0410431****[19]**P. J. Taylor,*The solution of Volterra integral equations of the first kind using inverted differentiation formulae*, Nordisk Tidskr. Informationsbehandling (BIT)**16**(1976), no. 4, 416–425. MR**0433930****[20]**P. J. Taylor,*Applications of results of Vainikko to Volterra integral equations*, Treatment of integral equations by numerical methods (Durham, 1982), Academic Press, London, 1982, pp. 185–195. MR**755354****[21]**G. Vainikko,*Approximative methods for nonlinear equations (two approaches to the convergence problem)*, Nonlinear Anal.**2**(1978), no. 6, 647–687. MR**512161**, 10.1016/0362-546X(78)90013-5**[22]**Genadi Vainikko,*Funktionalanalysis der Diskretisierungsmethoden*, B. G. Teubner Verlag, Leipzig, 1976 (German). Mit Englischen und Russischen Zusammenfassungen; Teubner-Texte zur Mathematik. MR**0468159****[23]**P. H. M. Wolkenfelt,*Reducible quadrature methods for Volterra integral equations of the first kind*, BIT**21**(1981), no. 2, 232–241. MR**627884**, 10.1007/BF01933168**[24]**P. H. M. Wolkenfelt,*Modified multilag methods for Volterra functional equations*, Math. Comp.**40**(1983), no. 161, 301–316. MR**679447**, 10.1090/S0025-5718-1983-0679447-2

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45L05

Retrieve articles in all journals with MSC: 65R20, 45L05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1984-0758194-3

Article copyright:
© Copyright 1984
American Mathematical Society