The generalized integro-exponential function

Author:
M. S. Milgram

Journal:
Math. Comp. **44** (1985), 443-458

MSC:
Primary 33A70; Secondary 65D15

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777276-4

MathSciNet review:
777276

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The generalized integro-exponential function is defined in terms of the exponential integral (incomplete gamma function) and its derivatives with respect to order. A compendium of analytic results is given in one section. Rational minimax approximations sufficient to permit the computation of the first six first-order functions are reported in another section.

**[1]**M. Abramowitz & I. Stegun,*Handbook of Mathematical Functions*, Chapter 5, U. S. National Bureau of Standards, Washington, DC, 1964. MR**0167642 (29:4914)****[2]**I. K. Abu-Shumays,*Transcendental Functions Generalizing the Exponential Integrals*, Northwestern University (unpublished) report COO-2280-6, 1973.**[3]**D. E. Amos, "Computation of exponential integrals,"*ACM Trans. Math. Software*, v. 6, 1980, pp. 365-377. MR**585343 (82b:65011)****[4]**L. Berg, "On the estimation of the remainder term in the asymptotic expansion of the exponential integral,"*Computing*, v. 18, 1977, pp. 361-363.**[5]**B. S. Berger,*Tables of Zeros and Weights for Gauss-Laguerre Quadrature to*24S*for n*= 400, 500, 600, Dept. of Mechanical Engineering, Univ. of Maryland, College Park, MD. (Unpublished report.)**[6]**W. F. Breig & A. L. Crosbie, "Numerical computation of a generalized exponential integral function,"*Math. Comp.*, v. 28, 1974, pp. 575-579. MR**0341811 (49:6557)****[7]**R. P. Brent, "A FORTRAN multiple-precision arithmetic package,"*ACM Trans. Math. Software*, v. 4, 1978, pp. 57-70;*ibid.*pp. 71-81.**[8]**S. Chandrasekhar,*Radiative Transfer*, Dover, New York, 1960. MR**0111583 (22:2446)****[9]**W. J. Cody & H. C. Thacher, Jr., "Rational Chebyshev approximations for the exponential integral ."*Math. Comp.*, v. 22, 1968, pp. 641-649. MR**0226823 (37:2410)****[10]**DCADRE, IMSL Library, 6th Floor, GNB Bldg., 7500 Bellaire Blvd., Houston, TX.**[11]**E. A. Gussman, "Modification to the weighting function method for the calculation of Fraunhofer lines in solar and stellar spectra,"*Z. Astrophys.*, v. 65, 1967, pp. 456-497.**[12]**H. C. Van de Hulst, "Scattering in a planetary atmosphere,"*Astrophys. J.*, v. 107, 1948, pp. 220-246. MR**0026409 (10:151a)****[13]**H. C. Van de Hulst,*Multiple Light Scattering*, Vol. 1, Academic Press, New York, 1980.**[14]**D. R. Jeng, E. J. Lee & K. J. de Witt, "Exponential integral kernels appearing in the radiative heat flux,"*Indian J. Tech.*, v. 13, 1975, pp. 72-75.**[15]**J. H. Johnson & J. M. Blair, REMES2:*A*FORTRAN*Programme to Calculate Rational Minimax Approximations to a Given Function*, Atomic Energy of Canada Ltd., Report AECL-4210, 1973.**[16]**C. Kaplan,*On a Generalization of the Exponential Integral*, Aerospace Research Lab. Report ARL-69-0120, 1969;*On Some Functions Related to the Exponential Integrals*, Aerospace Research Lab. Report ARL-70-0097, 1970;*Asymptotic and Series Expansion of the Generalized Exponential Integrals*, Air Force Office of Scientific Research Interim Report AFOSR-TR-72-2147, 1972.**[17]**J. Le Caine,*A Table of Integrals Involving the functions*, National Research Council of Canada Report NRC-1553, 1945, Section 1.6.**[18]**Y. L. Luke,*The Special Functions and Their Approximations*, Academic Press, New York, 1969.**[19]**A. S. Meligy & E. M. El Gazzy, "On the function ,"*Proc. Cambridge Philos. Soc.*, v. 59, 1963, pp. 735-737. MR**0153882 (27:3843)****[20]**M. S. Milgram, "Approximate solutions to the half-space integral transport equation near a plane boundary,"*Canad. J. Phys.*, v. 58, 1980, pp. 1291-1310.**[21]**M. S. Milgram, "Some properties of the solution to the integral transport equation in semi-infinite plane geometry,"*Atomkernenergie*, v. 38, 1981, pp. 99-106.**[22]**M. S. Milgram, "Solution of the integral transport equation across a place boundary,"*Proc. ANS/ENS International Topical Meeting on Advances in Mathematical Methods for the Solution of Nuclear Engineering Problems*, Munich, FDR, (1981), pp. 207-217.**[23]**W. Neuhaus & S. Schottlander, "The development of Aireys converging factors of the exponential integral to a representation with remainder term,"*Computing*, v. 15, 1975, pp. 41-52.**[24]**M. A. Sharaf, "On the -transform of the exponential integrals,"*Astrophys. and Space Sci.*, v. 60, 1979, pp. 199-212. MR**523233 (81g:65186)****[25]**R. R. Sharma & B. Zohuri, "A general method for an accurate evaluation of exponential integrals , ,"*J. Comput. Phys.*, v. 25, 1977, pp. 199-204. MR**0474705 (57:14339)****[26]**A. Stankiewicz, "The generalized integro-exponential functions,"*Acta Univ. Wratislav.*, No. 188, 1973, pp. 11-42. MR**0321265 (47:9798)****[27]**I. A. Stegun & R. Zucker, "Automatic computing methods for special functions. Part II,"*J. Res. Nat. Bur. Standards*, v. 78B, 1974, pp. 199-218. MR**0362844 (50:15282)****[28]**H. Strubbe, "Development of the SCHOONSCHIP program,"*Comput. Phys. Comm.*, v. 18, 1979, pp. 1-5.**[29]**R. Terras, "The determination of incomplete gamma functions through analytic integration,"*J. Comput. Phys.*, v. 31, 1979, pp. 146-151. MR**531128 (81d:65010)**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A70,
65D15

Retrieve articles in all journals with MSC: 33A70, 65D15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777276-4

Article copyright:
© Copyright 1985
American Mathematical Society