On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank

Authors:
Joe P. Buhler, Benedict H. Gross and Don B. Zagier

Journal:
Math. Comp. **44** (1985), 473-481

MSC:
Primary 11G40; Secondary 14G25

MathSciNet review:
777279

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The elliptic curve has rank 3 over **Q**. Assuming the Weil-Taniyama conjecture for this curve, we show that its *L*-series has a triple zero at and compute to 28 decimal places; its value agrees with the product of the regulator and real period, in accordance with the Birch-Swinnerton-Dyer conjecture if **III** is trivial.

**[1]**Armand Brumer and Kenneth Kramer,*The rank of elliptic curves*, Duke Math. J.**44**(1977), no. 4, 715–743. MR**0457453****[2]**Benedict Gross and Don Zagier,*Points de Heegner et dérivées de fonctions 𝐿*, C. R. Acad. Sci. Paris Sér. I Math.**297**(1983), no. 2, 85–87 (French, with English summary). MR**720914****[3]**Ju. I. Manin,*Cyclotomic fields and modular curves*, Uspehi Mat. Nauk**26**(1971), no. 6(162), 7–71 (Russian). MR**0401653****[4]**B. Mazur and P. Swinnerton-Dyer,*Arithmetic of Weil curves*, Invent. Math.**25**(1974), 1–61. MR**0354674****[5]**John T. Tate,*The arithmetic of elliptic curves*, Invent. Math.**23**(1974), 179–206. MR**0419359****[6]**J. Tate, Letter to J.-P. Serre, Oct. 1, 1979.**[7]**Horst Günter Zimmer,*On the difference of the Weil height and the Néron-Tate height*, Math. Z.**147**(1976), no. 1, 35–51. MR**0419455**

Retrieve articles in *Mathematics of Computation*
with MSC:
11G40,
14G25

Retrieve articles in all journals with MSC: 11G40, 14G25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1985-0777279-X

Article copyright:
© Copyright 1985
American Mathematical Society