Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

$ 2\,000\,000$ Steiner triple systems of order $ 19$


Authors: D. R. Stinson and H. Ferch
Journal: Math. Comp. 44 (1985), 533-535
MSC: Primary 05B07
MathSciNet review: 777284
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using a hill-climbing algorithm, we construct 2117600 Steiner triple systems of order 19. These are tested for isomorphism by means of invariants, and 2111276 are shown to be nonisomorphic.


References [Enhancements On Off] (What's this?)

  • [1] S. Bays, "Recherche des systèmes cycliques de triples de Steiner différents pour N premier (ou puissance de nombre premier) de la forme $ 6n + 1$," J. Math. Pures Appl. (9), v. 2, 1923, pp. 73-98.
  • [2] R. Deherder, Recouvrements, Thesis, Université Libre de Bruxelles, 1976, 212 pp.
  • [3] R. H. F. Denniston, Nonisomorphic reverse Steiner triple systems of order 19, Ann. Discrete Math. 7 (1980), 255–264. Topics on Steiner systems. MR 584416
  • [4] T. P. Kirkman, "On a problem in combinations," Cambridge and Dublin Math. J., v. 2, 1847, 191-204.
  • [5] Kevin T. Phelps and Alexander Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), no. 1, 57–66. MR 597228, 10.1016/0012-365X(81)90258-2
  • [6] Alan R. Prince, Steiner triple systems of order 19 constructed from the Steiner triple system of order 9, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), no. 1-2, 89–92. MR 700503, 10.1017/S0308210500016164
  • [7] Robert W. Quackenbush, Algebraic speculations about Steiner systems, Ann. Discrete Math. 7 (1980), 25–35. Topics on Steiner systems. MR 584401
  • [8] G. A. F. Seber, The estimation of animal abundance and related parameters, 2nd ed., Macmillan, Inc., New York, 1982. MR 686755
  • [9] D. R. Stinson, Hill-climbing algorithms for the construction of combinatorial designs, Algorithms in combinatorial design theory, North-Holland Math. Stud., vol. 114, North-Holland, Amsterdam, 1985, pp. 321–334. MR 833797, 10.1016/S0304-0208(08)72988-8
  • [10] D. R. Stinson, A comparison of two invariants for Steiner triple systems: fragments and trains, Ars Combin. 16 (1983), 69–76. MR 734047
  • [11] D. R. Stinson & E. Seah, "284457 Steiner triple systems of order 19 contain a subsystem of order 9." (Preprint)
  • [12] Richard M. Wilson, Nonisomorphic Steiner triple systems, Math. Z. 135 (1973/74), 303–313. MR 0340046

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 05B07

Retrieve articles in all journals with MSC: 05B07


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0777284-3
Article copyright: © Copyright 1985 American Mathematical Society