On Shapiro's cyclic inequality for
Author:
B. A. Troesch
Journal:
Math. Comp. 45 (1985), 199207
MSC:
Primary 26D15; Secondary 05A20
MathSciNet review:
790653
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A cyclic sum is formed with the N components of a vector x, where , , and where all denominators are positive and all numerators are nonnegative. It is known that there exist vectors x for which if and even, and if . It has been proved that the inequality holds for . Although it has been conjectured repeatedly that the inequality also holds for odd N between 13 and 23. this has apparently not yet been proved. Here we will confirm that the inequality indeed holds for .
 [1]
P.
J. Bushell and A.
H. Craven, On Shapiro’s cyclic inequality, Proc. Roy.
Soc. Edinburgh Sect. A 75 (1975/76), no. 4,
333–338. MR 0480320
(58 #493)
 [2]
D.
E. Daykin, Inequalities for functions of a cyclic nature, J.
London Math. Soc. (2) 3 (1971), 453–462. MR 0284394
(44 #1622a)
 [3]
P.
H. Diananda, On a cyclic sum, Proc. Glasgow Math. Assoc.
6 (1963), 11–13 (1963). MR 0150084
(27 #87)
 [4]
D.
Ž. Djoković, Sur une inégalité,
Proc. Glasgow Math. Assoc. 6 (1963), 1–10 (1963)
(French). MR
0150083 (27 #86)
 [5]
J.
Lambek and L.
Moser, Rational analogues of the logarithm function, Math.
Gaz. 40 (1956), 5–7. MR 0075977
(17,827h)
 [6]
E.
K. Godunova and V.
I. Levin, A cyclic sum with twelve terms, Mat. Zametki
19 (1976), no. 6, 873–885 (Russian). MR 0424578
(54 #12537)
 [7]
J. C. Lagartas, "The van der Waerden conjecture: Two Soviet solutions," Notices Amer. Math. Soc., v. 29, 1982, pp. 130133.
 [8]
Michael
A. Malcolm, A note on a conjecture of L. J.
Mordell, Math. Comp. 25 (1971), 375–377. MR 0284395
(44 #1622b), http://dx.doi.org/10.1090/S00255718197102843958
 [9]
D.
S. Mitrinović, Analytic inequalities, SpringerVerlag,
New YorkBerlin, 1970. In cooperation with P. M. Vasić. \tseries Die
Grundlehren der mathematischen Wissenschaften, Band 165. MR 0274686
(43 #448)
 [10]
L.
J. Mordell, On the inequality
∑ⁿᵣ₌₁𝑥ᵣ/(𝑥ᵣ₊₁+𝑥ᵣ₊₂)≧𝑛/2
and some others, Abh. Math. Sem. Univ. Hamburg 22
(1958), 229–241. MR 0096915
(20 #3397)
 [11]
Pedro
Nowosad, Isoperimetric eigenvalue problems in algebras, Comm.
Pure Appl. Math. 21 (1968), 401–465. MR 0238087
(38 #6363)
 [12]
J.
L. Searcy and B.
A. Troesch, A cyclic inequality and a related eigenvalue
problem, Pacific J. Math. 81 (1979), no. 1,
217–226. MR
543745 (80f:15019)
 [13]
H.
S. Shapiro, Richard
Bellman, D.
J. Newman, W.
E. Weissblum, H.
R. Smith, and H.
S. M. Coxeter, Advanced Problems and Solutions: Problems for
Solution: 46034607, Amer. Math. Monthly 61 (1954),
no. 8, 571–572. MR
1528827, http://dx.doi.org/10.2307/2307617
 [14]
A.
Zulauf, On a conjecture of L. J. Mordell, Abh. Math. Sem.
Univ. Hamburg 22 (1958), 240–241. MR 0124261
(23 #A1575)
 [1]
 P. J. Bushell & A.H. Craven, "On Shapiro's cyclic inequality," Proc. Roy. Soc. Edinburgh, Sect. A, v. 26, 1975/76, pp. 333338. MR 0480320 (58:493)
 [2]
 D. E. Daykin, "Inequalities for functions of a cyclic nature," J. London Math. Soc. (2), v. 3, 1971, pp. 453462. MR 0284394 (44:1622a)
 [3]
 P. H. Diananda, "On a cyclic sum," Proc. Glasgow Math. Assoc., v. 6, 1963, pp. 1113. MR 0150084 (27:87)
 [4]
 D. Ž. Djoković, "Sur une inégalité," Proc. Glasgow Math. Assoc., v. 6, 1963, pp. 110. MR 0150083 (27:86)
 [5]
 C. V. Durell, "Query," Math. Gaz., v. 40, 1956, p. 266. MR 0075977 (17:827h)
 [6]
 E. K. Godunova & V. I. Levin, "A cyclic sum with 12 terms," Math. Notes, v. 19, 1976, pp. 510517. MR 0424578 (54:12537)
 [7]
 J. C. Lagartas, "The van der Waerden conjecture: Two Soviet solutions," Notices Amer. Math. Soc., v. 29, 1982, pp. 130133.
 [8]
 M. A. Malcolm, "A note on a conjecture of L. J. Mordell," Math. Comp., v. 25, 1971, pp. 375377. MR 0284395 (44:1622b)
 [9]
 D. S. Mitrinović, Analytic Inequalities, SpringerVerlag, New York, 1970, pp. 132ff. MR 0274686 (43:448)
 [10]
 L. J. Mordell, "On the inequality and some others," Abh. Math. Sem. Univ. Hamburg, v. 22, 1958, pp. 229240. MR 0096915 (20:3397)
 [11]
 P. Nowosad, "Isoperimetric eigenvalue problems in algebra," Comm. Pure Appl. Math., v. 21, 1968, pp. 401465. MR 0238087 (38:6363)
 [12]
 J. L. Searcy & B. A. Troesch, "A cyclic inequality and a related eigenvalue problem," Pacific J. Math., v. 81, 1979, pp. 217226. MR 543745 (80f:15019)
 [13]
 H. S. Shapiro, "Problem 4603," Amer. Math. Monthly, v. 61, 1954, p. 571. MR 1528827
 [14]
 A. Zulauf, "Note on a conjecture of L. J. Mordell," Abh. Math. Sem. Univ. Hamburg, v. 22, 1958, pp. 240241. MR 0124261 (23:A1575)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
26D15,
05A20
Retrieve articles in all journals
with MSC:
26D15,
05A20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198507906530
PII:
S 00255718(1985)07906530
Keywords:
Cyclic inequality,
cyclic sum,
minimization
Article copyright:
© Copyright 1985
American Mathematical Society
