Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Deformations of the bifurcation diagram due to discretization


Authors: J. Bigge and E. Bohl
Journal: Math. Comp. 45 (1985), 393-403
MSC: Primary 65L10; Secondary 58F14
MathSciNet review: 804931
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: With a singular perturbation problem occurring in chemical reaction processes, substantial changes of the bifurcation diagram due to discretization are demonstrated. It is shown that a discrete system can possess any number of solutions, whereas the underlying continuous problem has exactly one solution. In addition to that, there is no way to favor one of the various discrete solutions as the one approximating the continuous solution.


References [Enhancements On Off] (What's this?)

  • [1] E. L. Allgower, On a discretization of 𝑦”+𝜆𝑦^{𝑘}=0, Topics in numerical analysis, II (Proc. Roy. Irish Acad. Conf., Univ. College, Dublin, 1974) Academic Press, London, 1975, pp. 1–15. MR 0428719
  • [2] W.-J. Beyn, Lösungszweige nichtlinearer Randwertaufgaben und ihre Approximation mit dem Differenzenverfahren, Habilitationsschrift, Universität Konstanz, 1981.
  • [3] W.-J. Beyn and J. Lorenz, Spurious solutions for discrete superlinear boundary value problems, Computing 28 (1982), no. 1, 43–51. MR 645968, 10.1007/BF02237994
  • [4] J. Bigge, Lösungsweige von Diskretisierungen nichtlinearer Randwertaufgaben, Ph. D. Thesis, Universität Konstanz, 1984.
  • [5a] E. Bohl, On the bifurcation diagram of discrete analogues for ordinary bifurcation problems, Math. Methods Appl. Sci. 1 (1979), no. 4, 566–571. MR 548689, 10.1002/mma.1670010413
  • [5b] Erich Bohl, Finite Modelle gewöhnlicher Randwertaufgaben, Leitfäden der Angewandten Mathematik und Mechanik [Guides to Applied Mathematics and Mechanics], vol. 51, B. G. Teubner, Stuttgart, 1981 (German). Teubner Studienbücher: Mathematik. [Teubner Study Books: Mathematics]. MR 633643
  • [6] Bifurcation theory and nonlinear eigenvalue problems, Edited by Joseph B. Keller and Stuart Antman, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0241213
  • [7] Jean-Pierre Kernevez, Enzyme mathematics, Studies in Mathematics and its Applications, vol. 10, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 594596
  • [8] J. P. Kernevez and D. Thomas, Numerical analysis and control of some biochemical systems, Appl. Math. Optim. 1 (1974/75), no. 3, 222–285 (English, with French summary). MR 0403716
  • [9] H.-W. Knobloch, Second order differential equalities and a nonlinear boundary value problem, J. Differential Equations 5 (1969), 55–71. MR 0234056
  • [10] Barbro Kreiss and Heinz-Otto Kreiss, Numerical methods for singular perturbation problems, SIAM J. Numer. Anal. 18 (1981), no. 2, 262–276. MR 612142, 10.1137/0718019
  • [11] J. D. Murray, Lectures on Nonlinear-Differential-Equation Models in Biology, Clarendon Press, Oxford, 1977.
  • [12] John W. Milnor, Topology from the differentiable viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va., 1965. MR 0226651
  • [13] H.-O. Peitgen, D. Saupe, and K. Schmitt, Nonlinear elliptic boundary value problems versus their finite difference approximations: numerically irrelevant solutions, J. Reine Angew. Math. 322 (1981), 74–117. MR 603027
  • [14] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1971/72), 979–1000. MR 0299921

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L10, 58F14

Retrieve articles in all journals with MSC: 65L10, 58F14


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1985-0804931-X
Keywords: Discrete deformations of bifurcation diagrams
Article copyright: © Copyright 1985 American Mathematical Society