A note on classnumber one in certain real quadratic and pure cubic fields
Authors:
M. Tennenhouse and H. C. Williams
Journal:
Math. Comp. 46 (1986), 333336
MSC:
Primary 11Y40; Secondary 11R11, 11R16
MathSciNet review:
815853
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let p be any odd prime and let be the class number of the real quadratic field . The results of a computer run to determine the density of the field with and are presented. Similar results are given for pure cubic fields with .
 [1]
Henri
Cohen, Sur la distribution asymptotique des groupes de
classes, C. R. Acad. Sci. Paris Sér. I Math.
296 (1983), no. 5, 245–247 (French, with
English summary). MR 693784
(84c:12001)
 [2]
H.
Eisenbeis, G.
Frey, and B.
Ommerborn, Computation of the 2rank of pure
cubic fields, Math. Comp.
32 (1978), no. 142, 559–569. MR 0480416
(58 #579), http://dx.doi.org/10.1090/S00255718197804804164
 [3]
Taira
Honda, Pure cubic fields whose class numbers are multiples of
three, J. Number Theory 3 (1971), 7–12. MR 0292795
(45 #1877)
 [4]
S. Kuroda, "Table of class numbers for quadratic fields , ," Math. Comp., v. 29, 1975, pp. 335336, UMT File.
 [5]
Richard
B. Lakein, Computation of the ideal class group
of certain complex quartic fields. II, Math.
Comp. 29 (1975),
137–144. Collection of articles dedicated to Derrick Henry Lehmer on
the occasion of his seventieth birthday. MR 0444605
(56 #2955), http://dx.doi.org/10.1090/S00255718197504446054
 [6]
H.
W. Lenstra Jr., On the calculation of regulators and class numbers
of quadratic fields, Number theory days, 1980 (Exeter, 1980) London
Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press,
Cambridge, 1982, pp. 123–150. MR 697260
(86g:11080)
 [7]
R.
J. Schoof, Quadratic fields and factorization, Computational
methods in number theory, Part II, Math. Centre Tracts, vol. 155,
Math. Centrum, Amsterdam, 1982, pp. 235–286. MR 702519
(85g:11118b)
 [8]
Daniel
Shanks, Class number, a theory of factorization, and genera,
1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence,
R.I., 1971, pp. 415–440. MR 0316385
(47 #4932)
 [9]
H.
C. Williams, Improving the speed of calculating the
regulator of certain pure cubic fields, Math.
Comp. 35 (1980), no. 152, 1423–1434. MR 583520
(82a:12003), http://dx.doi.org/10.1090/S00255718198005835204
 [10]
Hugh
C. Williams, Continued fractions and numbertheoretic
computations, Rocky Mountain J. Math. 15 (1985),
no. 2, 621–655. Number theory (Winnipeg, Man., 1983). MR 823273
(87h:11129), http://dx.doi.org/10.1216/RMJ1985152621
 [11]
H.
C. Williams and J.
Broere, A computational technique for
evaluating 𝐿(1,𝜒) and the class number of a real quadratic
field, Math. Comp. 30
(1976), no. 136, 887–893. MR 0414522
(54 #2623), http://dx.doi.org/10.1090/S00255718197604145225
 [12]
H.
C. Williams, G.
W. Dueck, and B.
K. Schmid, A rapid method of evaluating the
regulator and class number of a pure cubic field, Math. Comp. 41 (1983), no. 163, 235–286. MR 701638
(84m:12010), http://dx.doi.org/10.1090/S00255718198307016382
 [13]
H.
C. Williams and Daniel
Shanks, A note on classnumber one in pure
cubic fields, Math. Comp.
33 (1979), no. 148, 1317–1320. MR 537977
(80g:12002), http://dx.doi.org/10.1090/S00255718197905379777
 [1]
 H. Cohen, "Sur la distribution asymptotique des groupes de classes," C. R. Acad. Sci. Paris Sér. I Math., v. 296, 1983, pp. 245246. MR 693784 (84c:12001)
 [2]
 H. Eisenbeis, G. Frey & B. Ommerborn, "Computation of the 2rank of pure cubic fields," Math. Comp., v. 32, 1978, pp. 559569. MR 0480416 (58:579)
 [3]
 T. Honda, "Pure cubic fields whose class numbers are multiples of three," J. Number Theory, v. 3, 1971, pp. 712. MR 0292795 (45:1877)
 [4]
 S. Kuroda, "Table of class numbers for quadratic fields , ," Math. Comp., v. 29, 1975, pp. 335336, UMT File.
 [5]
 R. B. Lakein, "Computation of the ideal class group of certain complex quartic fields, II," Math. Comp., v. 29, 1975, pp. 137144. MR 0444605 (56:2955)
 [6]
 H. W. Lenstra, Jr., On the Calculation of Regulators and Class Numbers of Quadratic Fields, London Math. Soc. Lecture Note Series, no. 56, 1982, pp. 123150. MR 697260 (86g:11080)
 [7]
 R. Schoof, "Quadratic fields and factorization," Computational Methods in Number Theory, Part II, Math. Centrum Tracts, No. 155, Amsterdam, 1983, pp. 235286. MR 702519 (85g:11118b)
 [8]
 D. Shanks, Class Number, A Theory of Factorization, and Genera, Proc. Sympos. Pure Math., Vol. 20 (1969 Institute on Number Theory), Amer. Math. Soc., Providence, R. I., 1971, pp. 415440. MR 0316385 (47:4932)
 [9]
 H. C. Williams, "Improving the speed of calculating the regulator of certain pure cubic fields," Math. Comp., v. 35, 1980, pp. 14231434. MR 583520 (82a:12003)
 [10]
 H. C. Williams, "Continued fractions and numbertheoretic computations" (Proc. Number Theory Conf. Edmonton 1983), Rocky Mountain J. Math., v. 15, 1985, pp. 621655. MR 823273 (87h:11129)
 [11]
 H. C. Williams & J. Broere, "A computational technique for evaluating and the class number of a real quadratic field," Math. Comp., v. 30, 1976, pp. 887893. MR 0414522 (54:2623)
 [12]
 H. C. Williams, G. W. Dueck & B. K. Schmid, "A rapid method of evaluating the regulator and class number of a pure cubic field," Math. Comp., v. 41, 1983, pp. 235286. MR 701638 (84m:12010)
 [13]
 H. C. Williams & D. Shanks, "A note on classnumber one in pure cubic fields," Math. Comp., v. 33, 1979, pp. 13171320. MR 537977 (80g:12002)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11Y40,
11R11,
11R16
Retrieve articles in all journals
with MSC:
11Y40,
11R11,
11R16
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198608158533
PII:
S 00255718(1986)08158533
Article copyright:
© Copyright 1986
American Mathematical Society
