Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A note on class-number one in certain real quadratic and pure cubic fields


Authors: M. Tennenhouse and H. C. Williams
Journal: Math. Comp. 46 (1986), 333-336
MSC: Primary 11Y40; Secondary 11R11, 11R16
DOI: https://doi.org/10.1090/S0025-5718-1986-0815853-3
MathSciNet review: 815853
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let p be any odd prime and let $ h(p)$ be the class number of the real quadratic field $ \mathcal{Q}(\sqrt p )$. The results of a computer run to determine the density of the field $ \mathcal{Q}(\sqrt p )$ with $ h(p) = 1$ and $ p < {10^8}$ are presented. Similar results are given for pure cubic fields $ \mathcal{Q}(\sqrt[3]{p})$ with $ p < {10^6}$.


References [Enhancements On Off] (What's this?)

  • [1] H. Cohen, "Sur la distribution asymptotique des groupes de classes," C. R. Acad. Sci. Paris Sér. I Math., v. 296, 1983, pp. 245-246. MR 693784 (84c:12001)
  • [2] H. Eisenbeis, G. Frey & B. Ommerborn, "Computation of the 2-rank of pure cubic fields," Math. Comp., v. 32, 1978, pp. 559-569. MR 0480416 (58:579)
  • [3] T. Honda, "Pure cubic fields whose class numbers are multiples of three," J. Number Theory, v. 3, 1971, pp. 7-12. MR 0292795 (45:1877)
  • [4] S. Kuroda, "Table of class numbers $ h(p) > 1$ for quadratic fields $ Q(\sqrt p )$, $ p \leqslant 2776817$," Math. Comp., v. 29, 1975, pp. 335-336, UMT File.
  • [5] R. B. Lakein, "Computation of the ideal class group of certain complex quartic fields, II," Math. Comp., v. 29, 1975, pp. 137-144. MR 0444605 (56:2955)
  • [6] H. W. Lenstra, Jr., On the Calculation of Regulators and Class Numbers of Quadratic Fields, London Math. Soc. Lecture Note Series, no. 56, 1982, pp. 123-150. MR 697260 (86g:11080)
  • [7] R. Schoof, "Quadratic fields and factorization," Computational Methods in Number Theory, Part II, Math. Centrum Tracts, No. 155, Amsterdam, 1983, pp. 235-286. MR 702519 (85g:11118b)
  • [8] D. Shanks, Class Number, A Theory of Factorization, and Genera, Proc. Sympos. Pure Math., Vol. 20 (1969 Institute on Number Theory), Amer. Math. Soc., Providence, R. I., 1971, pp. 415-440. MR 0316385 (47:4932)
  • [9] H. C. Williams, "Improving the speed of calculating the regulator of certain pure cubic fields," Math. Comp., v. 35, 1980, pp. 1423-1434. MR 583520 (82a:12003)
  • [10] H. C. Williams, "Continued fractions and number-theoretic computations" (Proc. Number Theory Conf. Edmonton 1983), Rocky Mountain J. Math., v. 15, 1985, pp. 621-655. MR 823273 (87h:11129)
  • [11] H. C. Williams & J. Broere, "A computational technique for evaluating $ L(1,\chi )$ and the class number of a real quadratic field," Math. Comp., v. 30, 1976, pp. 887-893. MR 0414522 (54:2623)
  • [12] H. C. Williams, G. W. Dueck & B. K. Schmid, "A rapid method of evaluating the regulator and class number of a pure cubic field," Math. Comp., v. 41, 1983, pp. 235-286. MR 701638 (84m:12010)
  • [13] H. C. Williams & D. Shanks, "A note on class-number one in pure cubic fields," Math. Comp., v. 33, 1979, pp. 1317-1320. MR 537977 (80g:12002)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R11, 11R16

Retrieve articles in all journals with MSC: 11Y40, 11R11, 11R16


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0815853-3
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society