Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An iterative method for elliptic problems on regions partitioned into substructures


Authors: J. H. Bramble, J. E. Pasciak and A. H. Schatz
Journal: Math. Comp. 46 (1986), 361-369
MSC: Primary 65N20; Secondary 65F10, 65N30
DOI: https://doi.org/10.1090/S0025-5718-1986-0829613-0
MathSciNet review: 829613
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some new preconditioners for discretizations of elliptic boundary problems are studied. With these preconditioners, the domain under consideration is broken into subdomains and preconditioners are defined which only require the solution of matrix problems on the subdomains. Analytic estimates are given which guarantee that under appropriate hypotheses, the preconditioned iterative procedure converges to the solution of the discrete equations with a rate per iteration that is independent of the number of unknowns. Numerical examples are presented which illustrate the theoretically predicted iterative convergence rates.


References [Enhancements On Off] (What's this?)

  • [1] O. Axelsson, "A class of iterative methods for finite element equations," Comput. Methods Appl. Mech. Engrg., v. 9, 1976, pp. 123-137. MR 0433836 (55:6807)
  • [2] I. Babuška & A. K. Aziz, "Part I. Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972. MR 0421106 (54:9111)
  • [3] P. E. Bjørstad & O. B. Widlund, "Solving elliptic problems on regions partitioned into substructures," Elliptic Problem Solvers II (G. Birkhoff and A. Schoenstadt, eds.), Academic Press, New York, 1984. MR 764219 (85g:65007)
  • [4] B. L. Buzbee & F. W. Dorr, "The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions," SIAM J. Numer. Anal., v. 11, 1974, pp. 753-763. MR 0362944 (50:15382)
  • [5] B. L. Buzbee, F. W. Dorr, J. A. George & G. H. Golub, "The direct solution of the discrete Poisson equation on irregular regions," SIAM J. Numer. Anal., v. 8, 1971, pp. 722-736. MR 0292316 (45:1403)
  • [6] R. Chandra, Conjugate Gradient Methods for Partial Differential Equations, Yale Univ. Dept. Comp. Sci. Report No. 129, 1978.
  • [7] M. Dryja, "A capacitance matrix method for the Dirichlet problem on a polygonal region," Numer. Math., v. 39, 1982, pp. 51-64. MR 664536 (83g:65102)
  • [8] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. MR 775683 (86m:35044)
  • [9] P. Concus, G. Golub & D. O'Leary, "A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations," Sparse Matrix Computations (J. Bunch and D. Rose, eds.), Academic Press, New York, 1976, pp. 309-322. MR 0501821 (58:19069)
  • [10] H. C. Elman, Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear Equations, Yale Univ. Dept. Comp. Sci. Report No. 229, 1978.
  • [11] J. L. Lions & E. Magenes, Problèmes aux Limites non Homogènes et Applications, Vol. 1, Dunod, Paris, 1968. MR 0247243 (40:512)
  • [12] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967.
  • [13] W. Proskurowski & O. Widlund, "A finite element-capacitance matrix method for the Neumann problem for Laplace's equation," SIAM J. Sci. Statist. Comput., v. 1, 1980, pp. 410-426. MR 610753 (83e:65164)
  • [14] W. Proskurowski & O. Widlund, "On the numerical solution of Helmholtz's equation by the capacitance matrix method," Math. Comp., v. 20, 1976, pp. 433-468. MR 0421102 (54:9107)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N20, 65F10, 65N30

Retrieve articles in all journals with MSC: 65N20, 65F10, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0829613-0
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society