A convergent -D vortex method with grid-free stretching

Author:
J. Thomas Beale

Journal:
Math. Comp. **46** (1986), 401-424, S15

MSC:
Primary 76C05; Secondary 65M15, 76-08

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829616-6

MathSciNet review:
829616

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the convergence of a vortex method for three-dimensional, incompressible, inviscid flow without boundaries. This version differs from an earlier one whose convergence was shown in [4] in that the calculation does not depend explicitly on the arrangement of the vorticity elements in a Lagrangian frame. Thus, it could be used naturally in a more general context in which boundaries and viscosity are present. It is also shown that previous estimates for the velocity approximation can be improved by taking into account the fact that the integral kernel has average value zero. Implications for the design of the method are discussed.

**[1]**Christopher Anderson and Claude Greengard,*On vortex methods*, SIAM J. Numer. Anal.**22**(1985), no. 3, 413–440. MR**787568**, https://doi.org/10.1137/0722025**[2]**C. Anderson,*Vortex methods for Flows of Variable Density*, Ph. D. Thesis, Univ. of California, Berkeley, 1983.**[3]**Christopher R. Anderson,*A vortex method for flows with slight density variations*, J. Comput. Phys.**61**(1985), no. 3, 417–444. MR**816663**, https://doi.org/10.1016/0021-9991(85)90073-7**[4]**J. Thomas Beale and Andrew Majda,*Vortex methods. I. Convergence in three dimensions*, Math. Comp.**39**(1982), no. 159, 1–27. MR**658212**, https://doi.org/10.1090/S0025-5718-1982-0658212-5

J. Thomas Beale and Andrew Majda,*Vortex methods. II. Higher order accuracy in two and three dimensions*, Math. Comp.**39**(1982), no. 159, 29–52. MR**658213**, https://doi.org/10.1090/S0025-5718-1982-0658213-7**[5]**J. Thomas Beale and Andrew Majda,*Vortex methods. I. Convergence in three dimensions*, Math. Comp.**39**(1982), no. 159, 1–27. MR**658212**, https://doi.org/10.1090/S0025-5718-1982-0658212-5

J. Thomas Beale and Andrew Majda,*Vortex methods. II. Higher order accuracy in two and three dimensions*, Math. Comp.**39**(1982), no. 159, 29–52. MR**658213**, https://doi.org/10.1090/S0025-5718-1982-0658213-7**[6]**J. T. Beale & A. Majda, "High order accurate vortex methods with explicit velocity kernels,"*J. Comput. Phys.*, v. 58, 1985, pp. 188-208.**[7]**J. Thomas Beale and Andrew Majda,*Vortex methods for fluid flow in two or three dimensions*, Fluids and plasmas: geometry and dynamics (Boulder, Colo., 1983) Contemp. Math., vol. 28, Amer. Math. Soc., Providence, RI, 1984, pp. 221–229. MR**751986**, https://doi.org/10.1090/conm/028/751986**[8]**J. Thomas Beale and Andrew Majda,*Rates of convergence for viscous splitting of the Navier-Stokes equations*, Math. Comp.**37**(1981), no. 156, 243–259. MR**628693**, https://doi.org/10.1090/S0025-5718-1981-0628693-0**[9]**A. Cheer, "Numerical analysis of time dependent flow structure generated by an impulsively started circular cylinder in a slightly viscous incompressible fluid,"*SIAM J. Sci. Statist. Comput.*(To appear.)**[10]**Alexandre Joel Chorin,*Vortex models and boundary layer instability*, SIAM J. Sci. Statist. Comput.**1**(1980), no. 1, 1–21. MR**572539**, https://doi.org/10.1137/0901001**[11]**Alexandre Joel Chorin,*The evolution of a turbulent vortex*, Comm. Math. Phys.**83**(1982), no. 4, 517–535. MR**649815****[12]**A. J. Chorin and J. E. Marsden,*A mathematical introduction to fluid mechanics*, Springer-Verlag, New York-Heidelberg, 1979. MR**551053****[13]**Alexandre J. Chorin, Marjorie F. McCracken, Thomas J. R. Hughes, and Jerrold E. Marsden,*Product formulas and numerical algorithms*, Comm. Pure Appl. Math.**31**(1978), no. 2, 205–256. MR**0488713**, https://doi.org/10.1002/cpa.3160310205**[14]**G.-H. Cottet and P.-A. Raviart,*Particle methods for the one-dimensional Vlasov-Poisson equations*, SIAM J. Numer. Anal.**21**(1984), no. 1, 52–76. MR**731212**, https://doi.org/10.1137/0721003**[15]**G.-H. Cottet,*Méthodes Particulaires pour l'Equation d'Euler dans le Plan*, Thèse de 3e cycle, Université P. et M. Curie, Paris, 1982.**[16]**Gerald B. Folland,*Introduction to partial differential equations*, 2nd ed., Princeton University Press, Princeton, NJ, 1995. MR**1357411****[17]**C. Greengard,*Three-Dimensional Vortex Methods*, Ph. D. thesis, Univ. of California, Berkeley, 1984.**[18]**Ole Hald and Vincenza Mauceri del Prete,*Convergence of vortex methods for Euler’s equations*, Math. Comp.**32**(1978), no. 143, 791–809. MR**492039**, https://doi.org/10.1090/S0025-5718-1978-0492039-1

Ole H. Hald,*Convergence of vortex methods for Euler’s equations. II*, SIAM J. Numer. Anal.**16**(1979), no. 5, 726–755. MR**543965**, https://doi.org/10.1137/0716055**[19]**Ole Hald and Vincenza Mauceri del Prete,*Convergence of vortex methods for Euler’s equations*, Math. Comp.**32**(1978), no. 143, 791–809. MR**492039**, https://doi.org/10.1090/S0025-5718-1978-0492039-1

Ole H. Hald,*Convergence of vortex methods for Euler’s equations. II*, SIAM J. Numer. Anal.**16**(1979), no. 5, 726–755. MR**543965**, https://doi.org/10.1137/0716055**[20]**Tosio Kato,*Nonstationary flows of viscous and ideal fluids in 𝑅³*, J. Functional Analysis**9**(1972), 296–305. MR**0481652****[21]**A. Leonard, "Numerical simulation of interacting three-dimensional vortex filaments,"*Proc.*4*th Internat. Conf. Numer. Methods Fluid Dynamics*, Lecture Notes in Physics, vol. 35, Springer-Verlag, New York, 1975, pp. 245-249.**[22]**A. Leonard,*Vortex methods for flow simulation*, J. Comput. Phys.**37**(1980), no. 3, 289–335. MR**588256**, https://doi.org/10.1016/0021-9991(80)90040-6**[23]**A. Leonard, "Computing three-dimensional incompressible flows with vortex elements,"*Ann. Rev. Fluid Mech.*, v. 17, 1985, pp. 523-529.**[24]**C. Marchioro and M. Pulvirenti,*Hydrodynamics in two dimensions and vortex theory*, Comm. Math. Phys.**84**(1982), no. 4, 483–503. MR**667756****[25]**Y. Nakamura, A. Leonard & P. Spalart,*Numerical Simulation of Vortex Breakdown by the Vortex-Filament Method*, AGARD Proceedings #342, Rotterdam, 1983.**[26]**P. A. Raviart,*An Analysis of Particle Methods*, CIME Course, Como, Italy, 1983.**[27]**P. G. Saffman, "Vortex interactions and coherent structures in turbulence,"*Transition and Turbulence*(R. Meyer, ed.), Academic Press, New York, 1981, pp. 149-166.**[28]**E. D. Siggia, "Collapse and amplification of a vortex filament,"*Phys. Fluids*, v. 28, 1985, pp. 794-805.**[29]**P. Spalart,*Numerical Simulation of Separated Flows*, Ph. D. thesis, Stanford University, 1982.**[30]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[31]**R. Temam,*Local existence of 𝐶^{∞} solutions of the Euler equations of incompressible perfect fluids*, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Springer, Berlin, 1976, pp. 184–194. Lecture Notes in Math., Vol. 565. MR**0467033**

Retrieve articles in *Mathematics of Computation*
with MSC:
76C05,
65M15,
76-08

Retrieve articles in all journals with MSC: 76C05, 65M15, 76-08

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0829616-6

Article copyright:
© Copyright 1986
American Mathematical Society