On nonlocal monotone difference schemes for scalar conservation laws

Author:
Bradley J. Lucier

Journal:
Math. Comp. **47** (1986), 19-36

MSC:
Primary 65M10; Secondary 35L65

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842121-6

MathSciNet review:
842121

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide error analyses for explicit, implicit, and semi-implicit monotone finite-difference schemes on uniform meshes with nonlocal numerical fluxes. We are motivated by finite-difference discretizations of certain long-wave (Sobolev) regularizations of the conservation laws that explicitly add a dispersive term as well as a nonlinear dissipative term. We also develop certain relationships between dispersion and stability in finite-difference schemes. Specifically, we find that discretization and explicit dispersion have identical effects on the amount of artificial dissipation necessary for stability.

**[1]**T. B. Benjamin, J. L. Bona, and J. J. Mahony,*Model equations for long waves in nonlinear dispersive systems*, Philos. Trans. Roy. Soc. London Ser. A**272**(1972), no. 1220, 47–78. MR**0427868**, https://doi.org/10.1098/rsta.1972.0032**[2]**J. L. Bona, W. G. Pritchard, and L. R. Scott,*An evaluation of a model equation for water waves*, Philos. Trans. Roy. Soc. London Ser. A**302**(1981), no. 1471, 457–510. MR**633485**, https://doi.org/10.1098/rsta.1981.0178**[3]**M. G. Crandall and T. M. Liggett,*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**0287357**, https://doi.org/10.2307/2373376**[4]**Michael G. Crandall and Andrew Majda,*Monotone difference approximations for scalar conservation laws*, Math. Comp.**34**(1980), no. 149, 1–21. MR**551288**, https://doi.org/10.1090/S0025-5718-1980-0551288-3**[5]**Michael G. Crandall and Luc Tartar,*Some relations between nonexpansive and order preserving mappings*, Proc. Amer. Math. Soc.**78**(1980), no. 3, 385–390. MR**553381**, https://doi.org/10.1090/S0002-9939-1980-0553381-X**[6]**Klaus Deimling,*Ordinary differential equations in Banach spaces*, Lecture Notes in Mathematics, Vol. 596, Springer-Verlag, Berlin-New York, 1977. MR**0463601****[7]**Jim Douglas Jr.,*Simulation of a linear waterflood*, Free boundary problems, Vol. II (Pavia, 1979) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, pp. 195–216. MR**630748****[8]**Thomas J. R. Hughes (ed.),*Finite element methods for convection dominated flows*, AMD, vol. 34, American Society of Mechanical Engineers (ASME), New York, 1979. Papers presented at the Winter Annual Meeting of the American Society of Mechanical Engineers held in New York, December 2–7, 1979. MR**571679****[9]**Jim Douglas Jr. and Mary Fanett Wheeler,*Implicit, time-dependent variable grid finite difference methods for the approximation of a linear waterflood*, Math. Comp.**40**(1983), no. 161, 107–121. MR**679436**, https://doi.org/10.1090/S0025-5718-1983-0679436-8**[10]**Björn Engquist and Stanley Osher,*Stable and entropy satisfying approximations for transonic flow calculations*, Math. Comp.**34**(1980), no. 149, 45–75. MR**551290**, https://doi.org/10.1090/S0025-5718-1980-0551290-1**[11]**Enrico Giusti,*Minimal surfaces and functions of bounded variation*, Department of Pure Mathematics, Australian National University, Canberra, 1977. With notes by Graham H. Williams; Notes on Pure Mathematics, 10. MR**0638362****[12]**A. Harten, J. M. Hyman, and P. D. Lax,*On finite-difference approximations and entropy conditions for shocks*, Comm. Pure Appl. Math.**29**(1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR**0413526**, https://doi.org/10.1002/cpa.3160290305**[13]**G. W. Hedstrom,*Models of difference schemes for 𝑢_{𝑡}+𝑢ₓ=0 by partial differential equations*, Math. Comp.**29**(1975), no. 132, 969–977. MR**0388797**, https://doi.org/10.1090/S0025-5718-1975-0388797-4**[14]**A. Jameson & T. J. Baker,*Solution of the Euler Equations for Complex Configurations*, AIAA paper 83-1929, 1983.**[15]**S. N. Kruzhkov, "First order quasilinear equations with several independent variables,"*Math. USSR Sb.*, v. 10, 1970, pp. 217-243.**[16]**N. N. Kuznetsov, "Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation,"*USSR Comput. Math. and Math. Phys.*, v. 16, no. 6, 1976, pp. 105-119.**[17]**N. N. Kuznecov and S. A. Vološin,*Stability of a class of implicit finite-difference schemes*, Dokl. Akad. Nauk SSSR**242**(1978), no. 3, 525–528 (Russian). MR**507136****[18]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[19]**B. J. Lucier,*Dispersive Approximations for Hyperbolic Conservation Laws*, ANL-81-74, Argonne National Laboratory, 1981.**[20]**Bradley J. Lucier,*On Sobolev regularizations of hyperbolic conservation laws*, Comm. Partial Differential Equations**10**(1985), no. 1, 1–28. MR**773210**, https://doi.org/10.1080/03605308508820370**[21]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[22]**Richard Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing*, Math. Comp.**40**(1983), no. 161, 91–106. MR**679435**, https://doi.org/10.1090/S0025-5718-1983-0679435-6**[23]**Lloyd N. Trefethen,*Group velocity in finite difference schemes*, SIAM Rev.**24**(1982), no. 2, 113–136. MR**652463**, https://doi.org/10.1137/1024038**[24]**S. A. Vološin,*A class of monotone finite difference approximations of a first-order quasilinear differential equation*, Dokl. Akad. Nauk SSSR**242**(1978), no. 1, 14–16 (Russian). MR**506456****[25]**S. A. Voloshin,*A class of implicit finite-difference schemes*, Zh. Vychisl. Mat. i Mat. Fiz.**23**(1983), no. 2, 347–354 (Russian). MR**698222****[26]**G. B. Whitham,*Linear and nonlinear waves*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0483954**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
35L65

Retrieve articles in all journals with MSC: 65M10, 35L65

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842121-6

Article copyright:
© Copyright 1986
American Mathematical Society