On nonlocal monotone difference schemes for scalar conservation laws

Author:
Bradley J. Lucier

Journal:
Math. Comp. **47** (1986), 19-36

MSC:
Primary 65M10; Secondary 35L65

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842121-6

MathSciNet review:
842121

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide error analyses for explicit, implicit, and semi-implicit monotone finite-difference schemes on uniform meshes with nonlocal numerical fluxes. We are motivated by finite-difference discretizations of certain long-wave (Sobolev) regularizations of the conservation laws that explicitly add a dispersive term as well as a nonlinear dissipative term. We also develop certain relationships between dispersion and stability in finite-difference schemes. Specifically, we find that discretization and explicit dispersion have identical effects on the amount of artificial dissipation necessary for stability.

**[1]**T. B. Benjamin, J. L. Bona & J. J. Mahony, "Model equations for long waves in nonlinear dispersive systems,"*Philos. Trans. Roy. Soc. London Ser. A*, v. 272, 1972, pp. 47-78. MR**0427868 (55:898)****[2]**J. L. Bona, W. G. Pritchard & L. R. Scott, "An evaluation of a model equation for water waves."*Philos. Trans. Roy. Soc. London Ser. A*, v. 302, 1981, pp. 457-510. MR**633485 (83a:35088)****[3]**M. G. Crandall & T. M. Liggett, "Generation of semi-groups of nonlinear transformations on general Banach spaces,"*Amer. J. Math.*, v. 93, 1971, pp. 265-298. MR**0287357 (44:4563)****[4]**M. G. Crandall & A. Majda, "Monotone difference approximations for scalar conservation laws,"*Math. Comp.*, v. 34, 1980, pp. 1-21. MR**551288 (81b:65079)****[5]**M. G. Crandall & L. Tartar, "Some relations between nonexpansive and order preserving mappings,"*Proc. Amer. Math. Soc.*, v. 78, 1980, pp. 385-390. MR**553381 (81a:47054)****[6]**K. Deimling,*Ordinary Differential Equations in Banach Spaces*, Springer-Verlag, New York, 1977. MR**0463601 (57:3546)****[7]**J. Douglas, Jr., "Simulation of a linear waterflood." in*Free Boundary Problems*, Proceedings of a seminar held in Pavia, Sept.-Oct. 1979, Vol. II, Istituto Nazionale di Alta Matematica "Francesco Severi," Roma, 1980. MR**630748 (83e:76078)****[8]**J. Douglas, Jr., R. P. Kendall & M. F. Wheeler, "Long wave regularization of one-dimensional, two-phase, immiscible flow in porous media,"*Finite Element Methods for Convection Dominated Flows*, AMD-v. 34, ASME, New York, 1979, pp. 201-211. MR**571679 (81c:76001)****[9]**J. Douglas, Jr. & M. F. Wheeler, "Implicit, time-dependent variable grid finite difference methods for the approximation of a linear waterflood,"*Math. Comp.*, v. 40, 1983, pp. 107-122. MR**679436 (84a:65078)****[10]**B. Engquist & S. Osher, "Stable and entropy satisfying approximations for transonic flow calculations,"*Math. Comp.*, v. 34, 1980, pp. 45-75. MR**551290 (81b:65082)****[11]**E. Giusti,*Minimal Surfaces and Functions of Bounded Variation*, Australian National University, 1977. MR**0638362 (58:30685)****[12]**A. Harten, J. M. Hyman & P. D. Lax, "On finite difference approximations and entropy conditions for shocks,"*Comm. Pure Appl. Math.*, v. 29, 1976, pp. 297-322. MR**0413526 (54:1640)****[13]**G. W. Hedstrom, "Models of difference schemes for by partial differential equations,"*Math. Comp.*, v. 29, 1975, pp. 969-977. MR**0388797 (52:9631)****[14]**A. Jameson & T. J. Baker,*Solution of the Euler Equations for Complex Configurations*, AIAA paper 83-1929, 1983.**[15]**S. N. Kruzhkov, "First order quasilinear equations with several independent variables,"*Math. USSR Sb.*, v. 10, 1970, pp. 217-243.**[16]**N. N. Kuznetsov, "Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation,"*USSR Comput. Math. and Math. Phys.*, v. 16, no. 6, 1976, pp. 105-119.**[17]**N. N. Kuznetsov & S. A. Voloshin, "On the stability of a class of implicit finite-difference schemes,"*Dokl. Akad. Nauk SSSR*, v. 242, no. 3, 1978, pp. 525-528. MR**507136 (80b:65122)****[18]**P. D. Lax & B. Wendroff, "Systems of conservation laws,"*Comm. Pure Appl. Math.*, v. 13, 1960, pp. 217-237. MR**0120774 (22:11523)****[19]**B. J. Lucier,*Dispersive Approximations for Hyperbolic Conservation Laws*, ANL-81-74, Argonne National Laboratory, 1981.**[20]**B. J. Lucier, "On Sobolev regularizations of hyperbolic conservation laws,"*Comm. Partial Differential Equations*, v. 10, no. 1, 1985, pp. 1-28. MR**773210 (86h:35082)****[21]**R. D. Richtmyer & K. W. Morton,*Difference Methods for Initial-Value Problems*, 2nd ed., Wiley, New York, 1967. MR**0220455 (36:3515)****[22]**R. Sanders, "On convergence of monotone finite difference schemes with variable spatial differencing,"*Math. Comp.*, v. 40, 1983, pp. 91-106. MR**679435 (84a:65075)****[23]**L. N. Trefethen, "Group velocity in finite difference schemes,"*SIAM Rev.*, v. 24, 1982, pp. 113-136. MR**652463 (83b:65141)****[24]**S. A. Voloshin, "On a class of monotonic finite difference approximations of a first-order quasi-linear equation,"*Dokl. Akad. Nauk SSSR*, v. 242, no. 1, 1978, pp. 14-16. MR**506456 (80i:65099)****[25]**S. A. Voloshin, "On a class of implicit finite-difference schemes,"*USSR Comput. Math. and Math. Phys.*, v. 23, no. 2, 1983, pp. 59-63. MR**698222 (85f:65091)****[26]**G. B. Whitham,*Linear and Nonlinear Waves*, Wiley, New York, 1974. MR**0483954 (58:3905)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
35L65

Retrieve articles in all journals with MSC: 65M10, 35L65

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842121-6

Article copyright:
© Copyright 1986
American Mathematical Society