Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical approximation of Mindlin-Reissner plates


Authors: F. Brezzi and M. Fortin
Journal: Math. Comp. 47 (1986), 151-158
MSC: Primary 73K25; Secondary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1986-0842127-7
MathSciNet review: 842127
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a finite element approximation of the so-called Mindlin-Reissner formulation for moderately thick elastic plates. We show that stability and optimal error bounds hold independently of the value of the thickness.


References [Enhancements On Off] (What's this?)

  • [1] D. N. Arnold, "Discretization by finite elements of a model parameter dependent problem," Numer. Math., v. 37, 1981, pp. 405-421. MR 627113 (82h:65077)
  • [2] D. N. Arnold, F. Brezzi & M. Fortin, "A stable finite element for the Stokes equations," Calcolo, v. 21, 1984, pp. 337-344. MR 799997 (86m:65136)
  • [3] K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1982.
  • [4] K. J. Bathe & F. Brezzi, "On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation," in MAFELAP V (J. R. Whiteman, ed.), Academic Press, London, 1985, pp. 491-503. MR 811058 (87f:65125)
  • [5] K. J. Bathe & E. N. Dvorkin, A Formulation of General Shell Elements--The Use of Mixed Interpolation of Tensorial Components, Proc. Conf. Numerical Methods in Engineering: Theory and Applications (Swansea, Jan. 1985). (To appear.)
  • [6] F. Brezzi & M. Fortin, Book in preparation.
  • [7] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • [8] M. A. Crisfield, "A quadratic Mindlin element using shear constraints," Comput. & Structures, v. 18, no. 5, 1984, pp. 833-852.
  • [9] P. Destuynder, Thèse d'état, Université P. et M. Curie, Paris, 1980.
  • [10] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous incompressible Flows, Gordon and Breach, New York, 1963. MR 0155093 (27:5034b)
  • [11] G. Strang & G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. MR 0443377 (56:1747)
  • [12] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1978.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 73K25, 65N30

Retrieve articles in all journals with MSC: 73K25, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0842127-7
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society