Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Numerical approximation of Mindlin-Reissner plates


Authors: F. Brezzi and M. Fortin
Journal: Math. Comp. 47 (1986), 151-158
MSC: Primary 73K25; Secondary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1986-0842127-7
MathSciNet review: 842127
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a finite element approximation of the so-called Mindlin-Reissner formulation for moderately thick elastic plates. We show that stability and optimal error bounds hold independently of the value of the thickness.


References [Enhancements On Off] (What's this?)

  • [1] Douglas N. Arnold, Discretization by finite elements of a model parameter dependent problem, Numer. Math. 37 (1981), no. 3, 405–421. MR 627113, https://doi.org/10.1007/BF01400318
  • [2] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), no. 4, 337–344 (1985). MR 799997, https://doi.org/10.1007/BF02576171
  • [3] K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1982.
  • [4] K.-J. Bathe and F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, The mathematics of finite elements and applications, V (Uxbridge, 1984) Academic Press, London, 1985, pp. 491–503. MR 811058
  • [5] K. J. Bathe & E. N. Dvorkin, A Formulation of General Shell Elements--The Use of Mixed Interpolation of Tensorial Components, Proc. Conf. Numerical Methods in Engineering: Theory and Applications (Swansea, Jan. 1985). (To appear.)
  • [6] F. Brezzi & M. Fortin, Book in preparation.
  • [7] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [8] M. A. Crisfield, "A quadratic Mindlin element using shear constraints," Comput. & Structures, v. 18, no. 5, 1984, pp. 833-852.
  • [9] P. Destuynder, Thèse d'état, Université P. et M. Curie, Paris, 1980.
  • [10] O. A. Ladyženskaja, \cyr Matematicheskie voprosy dinamiki vyazkoĭneszhimaemoĭ zhidkosti, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 (Russian). MR 0155092
    O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Revised English edition. Translated from the Russian by Richard A. Silverman, Gordon and Breach Science Publishers, New York-London, 1963. MR 0155093
  • [11] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR 0443377
  • [12] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1978.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 73K25, 65N30

Retrieve articles in all journals with MSC: 73K25, 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1986-0842127-7
Article copyright: © Copyright 1986 American Mathematical Society