On solving singular integral equations via a hyperbolic tangent quadrature rule

Author:
Ezio Venturino

Journal:
Math. Comp. **47** (1986), 159-167

MSC:
Primary 65R20; Secondary 45E05

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842128-9

MathSciNet review:
842128

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a scheme for solving singular integral equations based on a "hyperbolic tangent" quadrature rule. The integral equation is reduced to a system of linear equations, after quadrature and collocation. The matrix of the system is shown to be nonsingular for every choice of the number of quadrature nodes by producing a lower bound for its determinant.

**[1]**F. R. Gantmacher,*The theory of matrices. Vols. 1, 2*, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR**0107649****[2]**J. McNamee, F. Stenger, and E. L. Whitney,*Whittaker’s cardinal function in retrospect*, Math. Comp.**25**(1971), 141–154. MR**0301428**, https://doi.org/10.1090/S0025-5718-1971-0301428-0**[3]**R. A. Sack,*Comments on some quadrature formulas by F. Stenger*, J. Inst. Math. Appl.**21**(1978), no. 3, 359–361. MR**0494861****[4]**Frank Stenger,*Integration formulae based on the trapezoidal formula*, J. Inst. Math. Appl.**12**(1973), 103–114. MR**0381261****[5]**Frank Stenger,*Approximations via Whittaker’s cardinal function*, J. Approximation Theory**17**(1976), no. 3, 222–240. MR**0481786****[6]**Frank Stenger,*Remarks on “Integration formulae based on the trapezoidal formula” (J. Inst. Math. Appl. 12 (1973), 103–114)*, J. Inst. Math. Appl.**19**(1977), no. 2, 145–147. MR**0440879****[7]**F. Stenger & D. Elliott, "SINC method of solution for singular integral equations," in*Numerical Solution of Singular Integral Equations*(A. Gerasoulis, R. Vichnevetsky, eds.), Proceedings of an IMACS International Symposium held at Lehigh University, Bethlehem, PA, USA, June 21-22, 1984, pp. 27-35.**[8]**J. M. Whittaker, "On the cardinal function of interpolation theory,"*Proc. Edinburgh Math. Soc.*(1), v. 2, 1927, pp. 41-46.**[9]**E. Venturino,*An Analysis of Some Direct Methods for the Numerical Solution of Singular Integral Equations*, Ph. D. thesis, SUNY at Stony Brook, 1984.

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45E05

Retrieve articles in all journals with MSC: 65R20, 45E05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0842128-9

Article copyright:
© Copyright 1986
American Mathematical Society