A uniformly accurate finite-element method for a singularly perturbed one-dimensional reaction-diffusion problem

Authors:
Eugene O'Riordan and Martin Stynes

Journal:
Math. Comp. **47** (1986), 555-570

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856702-7

MathSciNet review:
856702

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A finite-element method with exponential basis elements is applied to a selfadjoint, singularly perturbed, two-point boundary value problem. The tridiagonal difference scheme generated is shown to be uniformly second-order accurate for this problem (i.e., the nodal errors are bounded by , where *C* is independent of the mesh size *h* and the perturbation parameter). With a certain choice of trial functions, uniform first-order accuracy is obtained in .

**[1]**I. P. Boglaev,*A variational difference scheme for a boundary value problem with a small parameter multiplying the highest derivative*, Zh. Vychisl. Mat. i Mat. Fiz.**21**(1981), no. 4, 887–896, 1069 (Russian). MR**630072****[2]**E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders,*Uniform numerical methods for problems with initial and boundary layers*, Boole Press, Dún Laoghaire, 1980. MR**610605****[3]**P. P. N. de Groen,*A finite element method with a large mesh-width for a stiff two-point boundary value problem*, J. Comput. Appl. Math.**7**(1981), no. 1, 3–15. MR**611944**, https://doi.org/10.1016/0771-050X(81)90001-2**[4]**A. F. Hegarty, J. J. H. Miller, and E. O’Riordan,*Uniform second order difference schemes for singular perturbation problems*, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 301–305. MR**589380****[5]**P. W. Hemker,*A numerical study of stiff two-point boundary problems*, Mathematisch Centrum, Amsterdam, 1977. Mathematical Centre Tracts, No. 80. MR**0488784****[6]**John J. H. Miller,*On the convergence, uniformly in 𝜖, of difference schemes for a two point boundary singular perturbation problem*, Numerical analysis of singular perturbation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978) Academic Press, London-New York, 1979, pp. 467–474. MR**556537****[7]**Koichi Niijima,*On a three-point difference scheme for a singular perturbation problem without a first derivative term. I, II*, Mem. Numer. Math.**7**(1980), 1–27. MR**588462****[8]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[9]**E. O'Riordan,*Finite Element Methods for Singularly Perturbed Problems*, Ph.D. thesis, School of Mathematics, Trinity College, Dublin, 1982.**[10]**A. H. Schatz and L. B. Wahlbin,*On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions*, Math. Comp.**40**(1983), no. 161, 47–89. MR**679434**, https://doi.org/10.1090/S0025-5718-1983-0679434-4**[11]**G. I. Shishkin,*Difference scheme on a nonuniform grid for a differential equation with small parameter multiplying the highest derivative*, Zh. Vychisl. Mat. i Mat. Fiz.**23**(1983), no. 3, 609–619 (Russian). MR**706886****[12]**Martin Stynes and Eugene O’Riordan,*A superconvergence result for a singularly perturbed boundary value problem*, BAIL III (Dublin, 1984) Boole Press Conf. Ser., vol. 6, Boole, Dún Laoghaire, 1984, pp. 309–313. MR**774624****[13]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0856702-7

Article copyright:
© Copyright 1986
American Mathematical Society