Class groups of quadratic fields. II
Author:
Duncan A. Buell
Journal:
Math. Comp. 48 (1987), 8593
MSC:
Primary 11R29; Secondary 11R11, 11Y40
MathSciNet review:
866100
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A computation has been made of the noncyclic class groups of imaginary quadratic fields for even and odd discriminants from 0 to . Among the results are that 95% of the class groups are cyclic, and that and are the first discriminants of imaginary quadratic fields for which the class group has rank three in the 5Sylow subgroup. The latter was known to be of rank three; this computation demonstrates that it is the first odd discriminant of 5rank three or more.
 [1]
Josef
Blass and Ray
Steiner, On the equation
𝑦²+𝑘=𝑥⁷, Utilitas Math.
13 (1978), 293–297. MR 0480327
(58 #500)
 [2]
Duncan
A. Buell, Class groups of quadratic
fields, Math. Comp. 30
(1976), no. 135, 610–623. MR 0404205
(53 #8008), http://dx.doi.org/10.1090/S0025571819760404205X
 [3]
Duncan
A. Buell, Small class numbers and extreme values
of 𝐿functions of quadratic fields, Math. Comp. 31 (1977), no. 139, 786–796. MR 0439802
(55 #12684), http://dx.doi.org/10.1090/S0025571819770439802X
 [4]
D.
A. Buell, H.
C. Williams, and K.
S. Williams, On the imaginary bicyclic biquadratic
fields with classnumber 2, Math. Comp.
31 (1977), no. 140, 1034–1042. MR 0441914
(56 #305), http://dx.doi.org/10.1090/S00255718197704419141
 [5]
Duncan
A. Buell, The expectation of success using a
Monte Carlo factoring method—some statistics on quadratic class
numbers, Math. Comp. 43
(1984), no. 167, 313–327. MR 744940
(85k:11068), http://dx.doi.org/10.1090/S00255718198407449401
 [6]
H.
Cohen and H.
W. Lenstra Jr., Heuristics on class groups of number fields,
Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes
in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082
(85j:11144), http://dx.doi.org/10.1007/BFb0099440
 [7]
FranzPeter
Heider and Bodo
Schmithals, Zur Kapitulation der Idealklassen in unverzweigten
primzyklischen Erweiterungen, J. Reine Angew. Math.
336 (1982), 1–25 (German). MR 671319
(84g:12002)
 [8]
C.P.
Schnorr and H.
W. Lenstra Jr., A Monte Carlo factoring algorithm with
linear storage, Math. Comp.
43 (1984), no. 167, 289–311. MR 744939
(85d:11106), http://dx.doi.org/10.1090/S00255718198407449395
 [9]
R.
J. Schoof, Class groups of complex quadratic
fields, Math. Comp. 41
(1983), no. 163, 295–302. MR 701640
(84h:12005), http://dx.doi.org/10.1090/S00255718198307016400
 [10]
Daniel
Shanks, Class number, a theory of factorization, and genera,
1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence,
R.I., 1971, pp. 415–440. MR 0316385
(47 #4932)
 [1]
 Joseph Blass & Ray Steiner, "On the equation ," Utilitas Math., v. 13, 1978, pp. 293297. MR 0480327 (58:500)
 [2]
 Duncan A. Buell, "Class groups of quadratic fields," Math. Comp., v. 30, 1976, pp. 610623. MR 0404205 (53:8008)
 [3]
 Duncan A. Buell, "Small class numbers and extreme values of Lfunctions of quadratic fields," Math. Comp., v. 31, 1977, pp. 786796. MR 0439802 (55:12684)
 [4]
 Duncan A. Buell, H. C. Williams & Kenneth S. Williams, "On the imaginary bicyclic biquadratic fields of classnumber 2," Math. Comp., v. 31, 1977, pp. 10341042. MR 0441914 (56:305)
 [5]
 Duncan A. Buell, "The expectation of success using a Monte Carlo factoring methodsome statistics on quadratic class numbers," Math. Comp., v. 43, 1984, pp. 313327. MR 744940 (85k:11068)
 [6]
 H. Cohen & H. W. Lenstra, Jr., "Heuristics on class groups of number fields," in Number Theory (H. Jager, ed.), Lecture Notes in Math., vol. 1068, SpringerVerlag, Berlin, 1984, pp. 3362. MR 756082 (85j:11144)
 [7]
 FranzPeter Heider & Bodo Schmithals, "Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen," J. Reine Angew. Math., v. 336, 1983, pp. 125. MR 671319 (84g:12002)
 [8]
 C. P. Schnorr & H. W. Lenstra, Jr., "A Monte Carlo factoring algorithm with linear storage," Math. Comp., v. 43, 1984, pp. 289312. MR 744939 (85d:11106)
 [9]
 R. J. Schoof, "Class groups of complex quadratic fields," Math. Comp., v. 41, 1983, pp. 295302. MR 701640 (84h:12005)
 [10]
 Daniel Shanks, Class Number, A Theory of Factorization and Genera, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R.I., 1969, pp. 415440. MR 0316385 (47:4932)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
11R29,
11R11,
11Y40
Retrieve articles in all journals
with MSC:
11R29,
11R11,
11Y40
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198708661009
PII:
S 00255718(1987)08661009
Article copyright:
© Copyright 1987 American Mathematical Society
