Computing in the Jacobian of a hyperelliptic curve

Author:
David G. Cantor

Journal:
Math. Comp. **48** (1987), 95-101

MSC:
Primary 11Y16; Secondary 11G20, 14H25, 14H40

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866101-0

MathSciNet review:
866101

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present algorithms, suitable for computer use, for computation in the Jacobian of a hyperelliptic curve. We present a reduction algorithm which is asymptotically faster than that of Gauss when the genus *g* is very large.

**[1]**Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,*The design and analysis of computer algorithms*, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Second printing; Addison-Wesley Series in Computer Science and Information Processing. MR**0413592****[2]**D. V. Chudnovsky & G. V. Chudnovsky,*Sequences of Numbers Generated by Addition in Formal Groups and New Primality and Factorization Tests*, Research report RC 11262 (#50739), IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y., 1985.**[3]**Serge Lang,*Introduction to algebraic geometry*, Interscience Publishers, Inc., New York-London, 1958. MR**0100591****[4]**H. W. Lenstra, Jr., "Factorization using elliptic curves." (To be published.)**[5]**Peter L. Montgomery,*Speeding the Pollard and elliptic curve methods of factorization*, Math. Comp.**48**(1987), no. 177, 243–264. MR**866113**, https://doi.org/10.1090/S0025-5718-1987-0866113-7**[6]**David Mumford,*Tata lectures on theta. II*, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR**742776****[7]**C.-P. Schnorr and H. W. Lenstra Jr.,*A Monte Carlo factoring algorithm with linear storage*, Math. Comp.**43**(1984), no. 167, 289–311. MR**744939**, https://doi.org/10.1090/S0025-5718-1984-0744939-5**[8]**Martin Seysen,*A probabilistic factorization algorithm with quadratic forms of negative discriminant*, Math. Comp.**48**(1987), no. 178, 757–780. MR**878705**, https://doi.org/10.1090/S0025-5718-1987-0878705-X**[9]**Daniel Shanks,*Class number, a theory of factorization, and genera*, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR**0316385****[10]**H. C. Williams, G. W. Dueck, and B. K. Schmid,*A rapid method of evaluating the regulator and class number of a pure cubic field*, Math. Comp.**41**(1983), no. 163, 235–286. MR**701638**, https://doi.org/10.1090/S0025-5718-1983-0701638-2

Retrieve articles in *Mathematics of Computation*
with MSC:
11Y16,
11G20,
14H25,
14H40

Retrieve articles in all journals with MSC: 11Y16, 11G20, 14H25, 14H40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866101-0

Article copyright:
© Copyright 1987
American Mathematical Society