Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A table of fundamental pairs of units in totally real cubic fields


Authors: T. W. Cusick and Lowell Schoenfeld
Journal: Math. Comp. 48 (1987), 147-158
MSC: Primary 11R27; Secondary 11Y40
DOI: https://doi.org/10.1090/S0025-5718-1987-0866105-8
MathSciNet review: 866105
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply a method of Cusick [5] to tabulate data on the first 250 totally real cubic fields F having discriminant $ D \leqslant 6,885$. Apart from D, we list the class number H and the regulator R of F. Also given are the integer coefficients A,B,C of a defining polynomial $ g(x) = {x^3} - A{x^2} + Bx - C$, its index I, and its largest zero $ {R_0}$. For $ j = 1,2$, we also tabulate both the integer coefficients $ {X_j},{Y_j},{Z_j}$ for the two units $ {E_j} = ({X_j} + {R_0}{Y_j} + R_0^2{Z_j})/I$ with norm $ + 1$, forming a fundamental pair, as well as the $ {E_j}$ and the integers $ {F_j} = {\text{trace}}(E_j^2)$.


References [Enhancements On Off] (What's this?)

  • [1] I. O. Angell, "A table of totally real cubic fields," Math. Comp., v. 30, 1976, pp. 184-187. MR 0401701 (53:5528)
  • [2] K. K. Billevich, "On the units of algebraic fields of the third and fourth degrees" (in Russian), Mat. Sb., v. 40, 1956, pp. 123-136, and v. 48, 1959, p. 256 (some corrections). MR 0088516 (19:533d)
  • [3] H. Cohn & S. Gorn, "A computation of cyclic cubic units," J. Res. Nat. Bur. Standards, v. 59, 1967, pp. 155-168. MR 0089868 (19:732b)
  • [4] T. W. Cusick, "Finding fundamental units in cubic fields," Math. Proc. Cambridge Philos. Soc., v. 92, 1982, pp. 385-389. MR 677463 (84a:12010)
  • [5] T. W. Cusick, "Finding fundamental units in totally real fields," Math. Proc. Cambridge Philos. Soc., v. 96, 1984, pp. 191-194. MR 757653 (85k:11058)
  • [6] B. N. Delone & D. K. Faddeev, The Theory of Irrationalities of the Third Degree (in Russian), Trudy Mat. Inst. Steklov., vol. 11, 1940; English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. MR 0004269 (2:349d)
  • [7] V. Ennola & R. Turunen, "On totally real cubic fields," Math. Comp., v. 44, 1985, pp. 495-518. MR 777281 (86e:11100)
  • [8] H. J. Godwin, "The determination of units in totally real cubic fields," Proc. Cambridge Philos. Soc., v. 56, 1960, pp. 318-321. MR 0117216 (22:7998)
  • [9] H. J. Godwin, "The determination of the class-numbers of totally real cubic fields," Proc. Cambridge Philos. Soc., v. 57, 1961, pp. 728-730. MR 0126437 (23:A3733)
  • [10] H. J. Godwin, "A note on Cusick's theorem on units in totally real cubic fields," Math. Proc. Cambridge Philos. Soc., v. 95, 1984, pp. 1-2. MR 727072 (85e:11087)
  • [11] M.-N. Gras, "Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de Q," J. Reine Angew. Math., v. 277, 1975, pp. 89-116. MR 0389845 (52:10675)
  • [12] P. Llorente & A. V. Oneto, "On the real cubic fields," Math. Comp., v. 39, 1982, pp. 689-692. MR 669661 (84f:12002)
  • [13] M. Pohst, P. Weiler & H. Zassenhaus, "On effective computation of fundamental units, II," Math. Comp., v. 38, 1982, pp. 293-329. MR 637308 (83e:12005b)
  • [14] R. Steiner & R. Rudman, "On an algorithm of Billevich for finding units in algebraic number fields," Math. Comp., v. 30, 1976, pp. 598-609. MR 0404204 (53:8007)
  • [15] G. F. Voronoi, On a Generalization of the Algorithm for Continued Fractions (in Russian), Doctoral thesis, Warsaw, 1896.
  • [16] H. C. Williams & C. R. Zarnke, Computer Calculation of Units in Cubic Fields, Proc. Second Manitoba Conf. Numer. Math., 1972, pp. 433-468. MR 0401705 (53:5532)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 11R27, 11Y40

Retrieve articles in all journals with MSC: 11R27, 11Y40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0866105-8
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society