A table of fundamental pairs of units in totally real cubic fields

Authors:
T. W. Cusick and Lowell Schoenfeld

Journal:
Math. Comp. **48** (1987), 147-158

MSC:
Primary 11R27; Secondary 11Y40

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866105-8

MathSciNet review:
866105

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply a method of Cusick [5] to tabulate data on the first 250 totally real cubic fields *F* having discriminant . Apart from *D*, we list the class number *H* and the regulator *R* of *F*. Also given are the integer coefficients *A,B,C* of a defining polynomial , its index *I*, and its largest zero . For , we also tabulate both the integer coefficients for the two units with norm , forming a fundamental pair, as well as the and the integers .

**[1]**I. O. Angell, "A table of totally real cubic fields,"*Math. Comp.*, v. 30, 1976, pp. 184-187. MR**0401701 (53:5528)****[2]**K. K. Billevich, "On the units of algebraic fields of the third and fourth degrees" (in Russian),*Mat. Sb.*, v. 40, 1956, pp. 123-136, and v. 48, 1959, p. 256 (some corrections). MR**0088516 (19:533d)****[3]**H. Cohn & S. Gorn, "A computation of cyclic cubic units,"*J. Res. Nat. Bur. Standards*, v. 59, 1967, pp. 155-168. MR**0089868 (19:732b)****[4]**T. W. Cusick, "Finding fundamental units in cubic fields,"*Math. Proc. Cambridge Philos. Soc.*, v. 92, 1982, pp. 385-389. MR**677463 (84a:12010)****[5]**T. W. Cusick, "Finding fundamental units in totally real fields,"*Math. Proc. Cambridge Philos. Soc.*, v. 96, 1984, pp. 191-194. MR**757653 (85k:11058)****[6]**B. N. Delone & D. K. Faddeev,*The Theory of Irrationalities of the Third Degree*(in Russian), Trudy Mat. Inst. Steklov., vol. 11, 1940; English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. MR**0004269 (2:349d)****[7]**V. Ennola & R. Turunen, "On totally real cubic fields,"*Math. Comp.*, v. 44, 1985, pp. 495-518. MR**777281 (86e:11100)****[8]**H. J. Godwin, "The determination of units in totally real cubic fields,"*Proc. Cambridge Philos. Soc.*, v. 56, 1960, pp. 318-321. MR**0117216 (22:7998)****[9]**H. J. Godwin, "The determination of the class-numbers of totally real cubic fields,"*Proc. Cambridge Philos. Soc.*, v. 57, 1961, pp. 728-730. MR**0126437 (23:A3733)****[10]**H. J. Godwin, "A note on Cusick's theorem on units in totally real cubic fields,"*Math. Proc. Cambridge Philos. Soc.*, v. 95, 1984, pp. 1-2. MR**727072 (85e:11087)****[11]**M.-N. Gras, "Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de*Q*,"*J. Reine Angew. Math.*, v. 277, 1975, pp. 89-116. MR**0389845 (52:10675)****[12]**P. Llorente & A. V. Oneto, "On the real cubic fields,"*Math. Comp.*, v. 39, 1982, pp. 689-692. MR**669661 (84f:12002)****[13]**M. Pohst, P. Weiler & H. Zassenhaus, "On effective computation of fundamental units, II,"*Math. Comp.*, v. 38, 1982, pp. 293-329. MR**637308 (83e:12005b)****[14]**R. Steiner & R. Rudman, "On an algorithm of Billevich for finding units in algebraic number fields,"*Math. Comp.*, v. 30, 1976, pp. 598-609. MR**0404204 (53:8007)****[15]**G. F. Voronoi,*On a Generalization of the Algorithm for Continued Fractions*(in Russian), Doctoral thesis, Warsaw, 1896.**[16]**H. C. Williams & C. R. Zarnke,*Computer Calculation of Units in Cubic Fields*, Proc. Second Manitoba Conf. Numer. Math., 1972, pp. 433-468. MR**0401705 (53:5532)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R27,
11Y40

Retrieve articles in all journals with MSC: 11R27, 11Y40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866105-8

Article copyright:
© Copyright 1987
American Mathematical Society