Primes at a glance

Authors:
R. K. Guy, C. B. Lacampagne and J. L. Selfridge

Journal:
Math. Comp. **48** (1987), 183-202

MSC:
Primary 11A41

MathSciNet review:
866108

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let , , , for all primes . Then *N* is 0, 1 or a prime. Writing *N* in this form suggests a primality and a squarefreeness test. If we also require that when the prime and then , we say that is a *presentation* of *N*. We list all presentations found for any *N*. We believe our list is complete.

**[1]**D. H. Lehmer,*On a problem of Störmer*, Illinois J. Math.**8**(1964), 57–79. MR**0158849****[2]**D. H. Lehmer,*On the Converse of Fermat’s Theorem*, Amer. Math. Monthly**43**(1936), no. 6, 347–354. MR**1523680**, 10.2307/2301798**[3]**John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff Jr.,*Factorizations of 𝑏ⁿ±1*, Contemporary Mathematics, vol. 22, American Mathematical Society, Providence, R.I., 1983. 𝑏=2,3,5,6,7,10,11,12 up to high powers. MR**715603**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A41

Retrieve articles in all journals with MSC: 11A41

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866108-3

Article copyright:
© Copyright 1987
American Mathematical Society