Primes at a glance

Authors:
R. K. Guy, C. B. Lacampagne and J. L. Selfridge

Journal:
Math. Comp. **48** (1987), 183-202

MSC:
Primary 11A41

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866108-3

MathSciNet review:
866108

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let , , , for all primes . Then *N* is 0, 1 or a prime. Writing *N* in this form suggests a primality and a squarefreeness test. If we also require that when the prime and then , we say that is a *presentation* of *N*. We list all presentations found for any *N*. We believe our list is complete.

**[1]**D. H. Lehmer, "On a problem of Störmer,"*Illinois J. Math.*, v. 8, 1964, pp. 59-79. MR**0158849 (28:2072)****[2]**D. H. Lehmer, "On the converse of Fermat's Theorem,"*Amer. Math. Monthly*, v. 43, 1936, pp. 347-354. MR**1523680****[3]**John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman & S. S. Wagstaff, Jr.,*Factorizations of*,*up to high powers*, Contemp. Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1983. MR**715603 (84k:10005)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A41

Retrieve articles in all journals with MSC: 11A41

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866108-3

Article copyright:
© Copyright 1987
American Mathematical Society