On the Lánczos method for solving symmetric linear systems with several righthand sides
Author:
Youcef Saad
Journal:
Math. Comp. 48 (1987), 651662
MSC:
Primary 65F10; Secondary 65F50
MathSciNet review:
878697
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper analyzes a few methods based on the Lanczos algorithm for solving large sparse symmetric linear systems with several righthand sides. The methods examined are suitable for the situation when the right sides are not too different from one another, as is often the case in timedependent or parameterdependent problems. We propose a theoretical error bound for the approximation obtained from a projection process onto a Krylov subspace generated from processing a previous righthand side.
 [1]
E. Carnoy & M. Geradin, On the Practical Use of the Lanczos Algorithm in Finite Element Applications to Vibration and Bifurcation Problems, Proc. Conf. on Matrix Pencils, held at Lulea, Sweden, March 1982 (Axel Ruhe, ed.), University of Umea, SpringerVerlag, New York, 1982, pp. 156176.
 [2]
R. Chandra, Conjugate Gradient Methods for Partial Differential Equations, Ph.D. Thesis, Computer Science Dept., Yale University, 1978.
 [3]
C.
W. Gear and Y.
Saad, Iterative solution of linear equations in ODE codes,
SIAM J. Sci. Statist. Comput. 4 (1983), no. 4,
583–601. MR
725654 (85a:65104), http://dx.doi.org/10.1137/0904040
 [4]
Alston
S. Householder, The theory of matrices in numerical analysis,
Blaisdell Publishing Co. Ginn and Co. New YorkTorontoLondon, 1964. MR 0175290
(30 #5475)
 [5]
D. G. Luenberger, Introduction to Linear and Nonlinear Programming, AddisonWesley, Reading, Mass., 1965.
 [6]
Dianne
P. O’Leary, The block conjugate gradient algorithm and
related methods, Linear Algebra Appl. 29 (1980),
293–322. MR
562766 (81i:65027), http://dx.doi.org/10.1016/00243795(80)902475
 [7]
C.
C. Paige and M.
A. Saunders, Solutions of sparse indefinite systems of linear
equations, SIAM J. Numer. Anal. 12 (1975),
no. 4, 617–629. MR 0383715
(52 #4595)
 [8]
Beresford
N. Parlett, The symmetric eigenvalue problem, PrenticeHall,
Inc., Englewood Cliffs, N.J., 1980. PrenticeHall Series in Computational
Mathematics. MR
570116 (81j:65063)
 [9]
B.
N. Parlett, A new look at the Lanczos algorithm for solving
symmetric systems of linear equations, Linear Algebra Appl.
29 (1980), 323–346. MR 562767
(83e:65064), http://dx.doi.org/10.1016/00243795(80)902487
 [10]
Y.
Saad, Krylov subspace methods for solving
large unsymmetric linear systems, Math.
Comp. 37 (1981), no. 155, 105–126. MR 616364
(83j:65037), http://dx.doi.org/10.1090/S00255718198106163646
 [11]
Youcef
Saad, Practical use of some Krylov subspace methods for solving
indefinite and nonsymmetric linear systems, SIAM J. Sci. Statist.
Comput. 5 (1984), no. 1, 203–228. MR 731892
(85m:65029), http://dx.doi.org/10.1137/0905015
 [12]
Y. Saad & A. Sameh, A Parallel Block Stiefel Method for Solving Positive Definite Systems, Proceedings of the Elliptic Problem Solver Conference (M. H. Schultz, ed.), Los Alamos Scientific Laboratory, Academic Press, New York, 1980, pp. 405412.
 [13]
Y. Saad & A. Sameh, Iterative Methods for the Solution of Elliptic Differential Equations on Multiprocessors, Proceedings of the CONPAR 81 Conference (Wolfgang Handler, ed.), SpringerVerlag, New York, 1981, pp. 395411.
 [14]
Youcef
Saad and Martin
H. Schultz, Conjugate gradientlike algorithms for
solving nonsymmetric linear systems, Math.
Comp. 44 (1985), no. 170, 417–424. MR 777273
(86d:65047), http://dx.doi.org/10.1090/S00255718198507772739
 [15]
Horst
D. Simon, The Lanczos algorithm with partial
reorthogonalization, Math. Comp.
42 (1984), no. 165, 115–142. MR 725988
(85h:65075), http://dx.doi.org/10.1090/S0025571819840725988X
 [16]
H. A. van der Vorst, An Iterative Method for Solving Using cgInformation Obtained for the Symmetric Positive Definite Matrix A, Technical Report 8532, Delft University of Technology, Mathematics and Informatics, 1985.
 [1]
 E. Carnoy & M. Geradin, On the Practical Use of the Lanczos Algorithm in Finite Element Applications to Vibration and Bifurcation Problems, Proc. Conf. on Matrix Pencils, held at Lulea, Sweden, March 1982 (Axel Ruhe, ed.), University of Umea, SpringerVerlag, New York, 1982, pp. 156176.
 [2]
 R. Chandra, Conjugate Gradient Methods for Partial Differential Equations, Ph.D. Thesis, Computer Science Dept., Yale University, 1978.
 [3]
 W. C. Gear & Y. Saad, "Iterative solution of linear equations in ODE codes," SIAM J. Sci. Statist. Comput., v. 4, 1983, pp. 583601. MR 725654 (85a:65104)
 [4]
 A. S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell, Johnson, Colo., 1964. MR 0175290 (30:5475)
 [5]
 D. G. Luenberger, Introduction to Linear and Nonlinear Programming, AddisonWesley, Reading, Mass., 1965.
 [6]
 D. O'Leary, "The block conjugate gradient algorithm and related methods," Linear Algebra Appl., v. 29, 1980, pp. 243322. MR 562766 (81i:65027)
 [7]
 C. C. Paige & M. A. Saunders, "Solution of sparse indefinite systems of linear equations," SIAM J. Numer. Anal., v. 12, 1975, pp. 617624. MR 0383715 (52:4595)
 [8]
 B. N. Parlett, The Symmetric Eigenvalue Problem, PrenticeHall, Englewood Cliffs, N. J., 1980. MR 570116 (81j:65063)
 [9]
 B. N. Parlett, "A new look at the Lanczos algorithm for solving symmetric systems of linear equations," Linear Algebra Appl., v. 29, 1980, pp. 323346. MR 562767 (83e:65064)
 [10]
 Y. Saad, "Krylov subspace methods for solving large unsymmetric linear systems," Math. Comp., v. 37, 1981, pp. 105126. MR 616364 (83j:65037)
 [11]
 Y. Saad, "Practical use of some Krylov subspace methods for solving indefinite and unsymmetric linear systems," SIAM J. Sci. Statist. Comput., v. 5, 1984, pp. 203228. MR 731892 (85m:65029)
 [12]
 Y. Saad & A. Sameh, A Parallel Block Stiefel Method for Solving Positive Definite Systems, Proceedings of the Elliptic Problem Solver Conference (M. H. Schultz, ed.), Los Alamos Scientific Laboratory, Academic Press, New York, 1980, pp. 405412.
 [13]
 Y. Saad & A. Sameh, Iterative Methods for the Solution of Elliptic Differential Equations on Multiprocessors, Proceedings of the CONPAR 81 Conference (Wolfgang Handler, ed.), SpringerVerlag, New York, 1981, pp. 395411.
 [14]
 Y. Saad & M. H. Schultz, "Conjugate gradientlike algorithms for solving nonsymmetric linear systems," Math. Comp., v. 44, 1985, pp. 417424. MR 777273 (86d:65047)
 [15]
 H. D. Simon, "The Lanczos algorithm with partial reorthogonalization," Math. Comp., v. 42, 1984, pp. 115142. MR 725988 (85h:65075)
 [16]
 H. A. van der Vorst, An Iterative Method for Solving Using cgInformation Obtained for the Symmetric Positive Definite Matrix A, Technical Report 8532, Delft University of Technology, Mathematics and Informatics, 1985.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65F10,
65F50
Retrieve articles in all journals
with MSC:
65F10,
65F50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718198708786973
PII:
S 00255718(1987)08786973
Article copyright:
© Copyright 1987
American Mathematical Society
