Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws

Author:
Stefan Spekreijse

Journal:
Math. Comp. **49** (1987), 135-155

MSC:
Primary 65N05; Secondary 35L65, 76G15

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890258-9

MathSciNet review:
890258

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with two subjects: the construction of second-order accurate monotone upwind schemes for hyperbolic conservation laws and the multigrid solution of the resulting discrete steady-state equations. By the use of an appropriate definition of monotonicity, it is shown that there is no conflict between second-order accuracy and monotonicity (neither in one nor in more dimensions).

It is shown that a symmetric block Gauss-Seidel underrelaxation (each block is associated with 4 cells) has satisfactory smoothing rates. The success of this relaxation is due to the fact that, by coupling the unknowns in such blocks, the nine-point stencil of a second-order 2D upwind discretization changes into a five-point block stencil.

**[1]**A. Brandt,*Guide to Multigrid Development*(W. Hackbusch and U. Trottenberg, eds.), Multigrid Methods, Lecture Notes in Math., vol. 960, Springer-Verlag, Berlin and New York, 1982, pp. 220-312. MR**685775 (84k:65124)****[2]**S. Chakravarthy & S. Osher,*High Resolution Applications of the Osher Upwind Scheme for the Euler Equations*, AIAA paper 83-1943, Proc. AIAA Sixth Computational Fluid Dynamics Conf. (Danvers, Mass., July 1983), pp. 363-372.**[3]**J. B. Goodman & R. J. LeVeque, "On the accuracy of stable schemes for 2D scalar conservation laws,"*Math. Comp.*, v. 45, 1985, pp. 15-21. MR**790641 (86f:65149)****[4]**A. Harten, J. M. Hyman & P. D. Lax, "On finite-difference approximations and entropy conditions for shocks,"*Comm. Pure Appl. Math.*, v. 29, 1976, pp. 197-322. MR**0413526 (54:1640)****[5]**A. Harten, "High resolution schemes for hyperbolic conservation laws,"*J. Comput. Phys.*, v. 49, 1983, pp. 357-393. MR**701178 (84g:65115)****[6]**P. W. Hemker & S. P. Spekreijse, "Multiple grid and Osher's scheme for the efficient solution of the steady Euler equations,"*Appl. Numer. Math.*, v. 2, 1986, 475-493. MR**871090 (88k:65103)****[7]**P. W. Hemker & S. P. Spekreijse,*Multigrid Solution of the Steady Euler Equations*(D. Braess, W. Hackbusch and U. Trottenberg, eds.), Advances in Multigrid Methods, Notes on Numerical Fluid Dynamics, vol. 11, Vieweg Publ. Co., Braunschweig, 1985, pp. 33-44. MR**833989 (87d:65131)****[8]**D. C. Jespersen, "Design and implementation of a multigrid code for the Euler equations,"*Appl. Math. Comput.*, v. 13, 1983, pp. 357-374. MR**726641 (84m:76009)****[9]**W. A. Mulder & B. van Leer,*Implicit Upwind Methods for the Euler Equations*, AIAA paper 83-1930, AIAA 6th Computational Fluid Dynamics Conf. (Danvers, Mass., 1983), pp. 303-310.**[10]**S. P. Spekreijse,*Second Order Accurate Upwind Solutions of the 2 D Steady Euler Equations by the Use of a Defect Correction Method*, Multigrid Methods II, Proc. 2nd European Multigrid Conference (Cologne, 1985), Lecture Notes in Math., vol. 1228, Springer-Verlag, Berlin and New York, 1985, pp. 285-300. MR**896067 (88f:65171)****[11]**P. K. Sweby, "High resolution schemes using flux limiters for hyperbolic conservation laws,"*SIAM J. Numer. Anal.*, v. 21, 1984, pp. 995-1011. MR**760628 (85m:65085)****[12]**G. D. van Albada, B. van Leer & W. W. Roberts, Jr., "A comparative study of computational methods in cosmic gas dynamics,"*Astronom, and Astrophys.*, v. 108, 1982, pp. 76-84.**[13]**B. van Leer, "Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme,"*J. Comput. Phys.*, v. 14, 1974, pp. 361-370.**[14]**B. van Leer, "Towards the ultimate conservative difference scheme IV. A new approach to numerical convection,"*J. Comput. Phys.*, v. 23, 1977, pp. 276-299.**[15]**B. van Leer,*Upwind Difference Methods for Aerodynamic Problems Governed by the Euler Equations*, Lectures in Appl. Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1985, pp. 327-336. MR**818795 (87b:65136)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N05,
35L65,
76G15

Retrieve articles in all journals with MSC: 65N05, 35L65, 76G15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0890258-9

Keywords:
Conservation laws,
multigrid methods

Article copyright:
© Copyright 1987
American Mathematical Society