Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Quadrature formulae for Cauchy principal value integrals of oscillatory kind


Author: G. E. Okecha
Journal: Math. Comp. 49 (1987), 259-268
MSC: Primary 65D32; Secondary 41A55
DOI: https://doi.org/10.1090/S0025-5718-1987-0890267-X
MathSciNet review: 890267
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem considered is that of evaluating numerically an integral of the form $ f_{ - 1}^1\;{e^{i\omega x}}f(x)\,dx$, where f has one simple pole in the interval $ [ - 1,1]$. Modified forms of the Lagrangian interpolation formula, taking account of the simple pole are obtained, and form the bases for the numerical quadrature rules obtained. Further modification to deal with the case when an abscissa in the interpolation formula is coincident with the pole is also considered. An error bound is provided and some numerical examples are given to illustrate the formulae developed.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1970. MR 1225604 (94b:00012)
  • [2] N. S. Bahvalov & L. G. Vasil'eva, "Evaluation of the integrals of oscillatory functions by interpolation at nodes of Gaussian quadratures," Ž. Vyčisl. Mat. i Mat. Fiz., v. 8, 1968, pp. 175-181. (Russian) MR 0226851 (37:2437)
  • [3] M. M. Chawla & N. Jayarajan, "Quadrature formulas for Cauchy principal value integrals," Computing, v. 15, 1975, pp. 347-355. MR 0415991 (54:4068)
  • [4] P. J. Davis & P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975. MR 0448814 (56:7119)
  • [5] D. Elliott & D. F. Paget, "Gauss-type quadrature rules for Cauchy principal value integrals," Math. Comp., v. 33, 1979, pp. 301-309. MR 514825 (81h:65023)
  • [6] L. N. G. Filon, "On a quadrature formula for trigonometric integrals," Proc. Roy. Soc. Edinburgh, v. 49, 1929, pp. 38-47.
  • [7] W. Gautschi, "A survey of Gauss-Christoffel quadrature formulae," in E. B. Christoffel (P. L. Butzer and F. Fehér, eds.), Birkhäuser Verlag, Basel, 1981, pp. 73-147. MR 661060 (83g:41031)
  • [8] I. S. Gradshteyn & I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.
  • [9] D. B. Hunter, "Some Gauss-type formulae for the evaluation of Cauchy principal values of integrals," Numer. Math., v. 19, 1972, pp. 419-424. MR 0319355 (47:7899)
  • [10] N. S. Kambo, "Error of the Newton-Cotes and Gauss-Legendre quadrature formulas," Math. Comp., v. 24, 1970, pp. 261-269. MR 0275671 (43:1424)
  • [11] S. Kumar, "A note on quadrature formulae for Cauchy principal value integrals," J. Inst. Math. Appl., v. 26, 1980, pp. 447-451. MR 605402 (82d:65027)
  • [12] R. K. Littlewood & V. Zakian, "Numerical evaluation of Fourier integrals," J. Inst. Math. Appl., v. 18, 1976, pp. 331-339. MR 0448822 (56:7127)
  • [13] I. M. Longman, "On the numerical evaluation of Cauchy principal values of integrals," MTAC, v. 12, 1958, pp. 205-207. MR 0100356 (20:6789)
  • [14] Y. L. Luke, "On the computation of oscillatory integrals, Part 2," Proc. Cambridge Philos. Soc., v. 50, 1954, pp. 264-277. MR 0062518 (15:992b)
  • [15] J. C. P. Miller, British Association for the Advancement of Science, Mathematical Tables, Volume X, Bessel Functions, Part II, Functions of Positive Integer Order, Cambridge Univ. Press, New York, 1952. MR 0050973 (14:410d)
  • [16] D. F. Paget & D. Elliott, "An algorithm for the numerical evaluation of certain Cauchy principal value integrals," Numer. Math., v. 19, 1972, pp. 373-385. MR 0366004 (51:2256)
  • [17] T. N. L. Patterson, "On high precision methods for the evaluation of Fourier integrals with finite and infinite limits," Numer. Math., v. 27, 1976, pp. 41-52. MR 0433932 (55:6902)
  • [18] R. Piessens & F. Poleunis, "A numerical method for the integration of oscillatory functions," BIT, v. 11, 1971, pp. 317-327. MR 0288959 (44:6154)
  • [19] R. Piessens & M. Branders, "The evaluation and application of some modified moments," BIT, v. 13, 1973, pp. 443-450. MR 0331737 (48:10069)
  • [20] A. Ralston & P. Rabinowitz, A First Course in Numerical Analysis, 2nd ed., McGraw-Hill, New York, 1978. MR 0494814 (58:13599)
  • [21] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.
  • [22] B. Ting & Y. L. Luke, "Computation of integrals with oscillatory and singular integrands," Math. Comp., v. 37, 1981, pp. 169-183. MR 616369 (82f:65022)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D32, 41A55

Retrieve articles in all journals with MSC: 65D32, 41A55


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1987-0890267-X
Keywords: Lagrangian interpolation, orthogonal polynomials, oscillatory integrals, Cauchy principal value, Legendre polynomials, error bound
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society