On the convergence of difference approximations to scalar conservation laws

Authors:
Stanley Osher and Eitan Tadmor

Journal:
Math. Comp. **50** (1988), 19-51

MSC:
Primary 65M10; Secondary 35L65, 65M05

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917817-X

MathSciNet review:
917817

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a unified treatment of explicit in time, two-level, second-order resolution (SOR), total-variation diminishing (TVD), approximations to scalar conservation laws. The schemes are assumed only to have conservation form and incremental form. We introduce a modified flux and a viscosity coefficient and obtain results in terms of the latter. The existence of a cell entropy inequality is discussed and such an equality for all entropies is shown to imply that the scheme is an *E* scheme on monotone (actually more general) data, hence at most only first-order accurate in general. Convergence for TVD-SOR schemes approximating convex or concave conservation laws is shown by enforcing a single discrete entropy inequality.

**[1]**J. P. Boris & D. L. Book, "Flux corrected transport: I. SHASTA, a fluid transport algorithm that works,"*J. Comput. Phys.*, v. 11, 1973, pp. 38-69.**[2]**S. R. Charravarthy & S. Osher, "Computing with high resolution upwind schemes for hyperbolic equations," to appear in*Proceedings of AMS/SIAM*, 1983*Summer Seminar*, La Jolla, Calif. (B. Engquist, S. Osher, and R. C. J. Somerville, eds.).**[3]**Michael G. Crandall and Andrew Majda,*Monotone difference approximations for scalar conservation laws*, Math. Comp.**34**(1980), no. 149, 1–21. MR**551288**, https://doi.org/10.1090/S0025-5718-1980-0551288-3**[4]**Philip J. Davis and Philip Rabinowitz,*Methods of numerical integration*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers] New York-London, 1975. Computer Science and Applied Mathematics. MR**0448814****[5]**R. J. DiPerna,*Convergence of approximate solutions to conservation laws*, Arch. Rational Mech. Anal.**82**(1983), no. 1, 27–70. MR**684413**, https://doi.org/10.1007/BF00251724**[6]**Björn Engquist and Stanley Osher,*One-sided difference approximations for nonlinear conservation laws*, Math. Comp.**36**(1981), no. 154, 321–351. MR**606500**, https://doi.org/10.1090/S0025-5718-1981-0606500-X**[7]**S. K. Godunov,*A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics*, Mat. Sb. (N.S.)**47 (89)**(1959), 271–306 (Russian). MR**0119433****[8]**A. Harten,*The Method of Artificial Compression*: I.*Shocks and Contact Discontinuities*, AEC Research & Development Report C00-3077-50, Courant Institute, New York University, June 1984.**[9]**Amiram Harten,*The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes*, Math. Comp.**32**(1978), no. 142, 363–389. MR**0489360**, https://doi.org/10.1090/S0025-5718-1978-0489360-X**[10]**Ami Harten,*High resolution schemes for hyperbolic conservation laws*, J. Comput. Phys.**49**(1983), no. 3, 357–393. MR**701178**, https://doi.org/10.1016/0021-9991(83)90136-5**[11]**Ami Harten,*On a class of high resolution total-variation-stable finite-difference schemes*, SIAM J. Numer. Anal.**21**(1984), no. 1, 1–23. With an appendix by Peter D. Lax. MR**731210**, https://doi.org/10.1137/0721001**[12]**A. Harten, J. M. Hyman, and P. D. Lax,*On finite-difference approximations and entropy conditions for shocks*, Comm. Pure Appl. Math.**29**(1976), no. 3, 297–322. With an appendix by B. Keyfitz. MR**0413526**, https://doi.org/10.1002/cpa.3160290305**[13]**S. N. Kružkov, "First order quasilinear equations in several independent variables,"*Math. USSR Sb.*, v. 10, 1970, pp. 217-243.**[14]**Peter D. Lax,*Hyperbolic systems of conservation laws and the mathematical theory of shock waves*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR**0350216****[15]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[16]**E. M. Murman, "Analysis of embedded shock waves calculated by relaxation methods,"*AIAA J.*, v. 12, 1974, pp. 626-633.**[17]**O. A. Oleĭnik,*Discontinuous Solutions of Nonlinear Differential Equations*, Amer. Math. Soc. Transl. (2), vol. 26, Amer. Math. Soc., Providence, R. I., 1963, pp. 95-172.**[18]**Stanley Osher,*Riemann solvers, the entropy condition, and difference approximations*, SIAM J. Numer. Anal.**21**(1984), no. 2, 217–235. MR**736327**, https://doi.org/10.1137/0721016**[19]**Stanley Osher,*Convergence of generalized MUSCL schemes*, SIAM J. Numer. Anal.**22**(1985), no. 5, 947–961. MR**799122**, https://doi.org/10.1137/0722057**[20]**Stanley Osher and Sukumar Chakravarthy,*High resolution schemes and the entropy condition*, SIAM J. Numer. Anal.**21**(1984), no. 5, 955–984. MR**760626**, https://doi.org/10.1137/0721060**[21]**Stanley Osher and Sukumar Chakravarthy,*Very high order accurate TVD schemes*, Oscillation theory, computation, and methods of compensated compactness (Minneapolis, Minn., 1985) IMA Vol. Math. Appl., vol. 2, Springer, New York, 1986, pp. 229–274. MR**869827**, https://doi.org/10.1007/978-1-4613-8689-6_9**[22]**P. L. Roe,*Approximate Riemann solvers, parameter vectors, and difference schemes*, J. Comput. Phys.**43**(1981), no. 2, 357–372. MR**640362**, https://doi.org/10.1016/0021-9991(81)90128-5**[23]**Richard Sanders,*On convergence of monotone finite difference schemes with variable spatial differencing*, Math. Comp.**40**(1983), no. 161, 91–106. MR**679435**, https://doi.org/10.1090/S0025-5718-1983-0679435-6**[24]**P. K. Sweby,*High resolution schemes using flux limiters for hyperbolic conservation laws*, SIAM J. Numer. Anal.**21**(1984), no. 5, 995–1011. MR**760628**, https://doi.org/10.1137/0721062**[25]**Eitan Tadmor,*The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme*, Math. Comp.**43**(1984), no. 168, 353–368. MR**758188**, https://doi.org/10.1090/S0025-5718-1984-0758188-8**[26]**Eitan Tadmor,*Numerical viscosity and the entropy condition for conservative difference schemes*, Math. Comp.**43**(1984), no. 168, 369–381. MR**758189**, https://doi.org/10.1090/S0025-5718-1984-0758189-X**[27]**Bram van Leer,*An introduction to the article “Reminiscences about difference schemes” [J. Comput. Phys. 153 (1999), no. 1, 6–25; MR1703647 (2000h:65121)] by S. K. Godunov*, J. Comput. Phys.**153**(1999), no. 1, 1–5. MR**1703646**, https://doi.org/10.1006/jcph.1999.6270**[28]**B. Van Leer, "Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order scheme,"*J. Comput. Phys.*, v. 14, 1974, pp. 361-376.

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
35L65,
65M05

Retrieve articles in all journals with MSC: 65M10, 35L65, 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0917817-X

Article copyright:
© Copyright 1988
American Mathematical Society