An analysis of a uniformly convergent finite difference/finite element scheme for a model singular-perturbation problem

Author:
Eugene C. Gartland

Journal:
Math. Comp. **51** (1988), 93-106

MSC:
Primary 65L10; Secondary 65L60

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942145-6

MathSciNet review:
942145

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Uniform convergence is proved for the El-Mistikawy-Werle discretization of the problem on (0,1), , , subject only to the conditions and . The principal tools used are a certain representation result for the solutions of such problems that is due to the author [*Math. Comp.*, v. 48, 1987, pp. 551-564] and the general stability results of Niederdrenk and Yserentant [*Numer. Math.*, v. 41, 1983, pp. 223-253]. Global uniform convergence is proved under slightly weaker assumptions for an equivalent Petrov-Galerkin formulation.

**[1]**A. E. Berger, J. M. Solomon & M. Ciment, "An analysis of a uniformly accurate difference method for a singular perturbation problem,"*Math. Comp.*, v. 37, 1981, pp. 79-94. MR**616361 (83f:65121)****[2]**J. Douglas, Jr. & T. Dupont, "Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems," in*Topics in Numerical Analysis*, Proc. Royal Irish Academy Conf., 1972 (J. J. H. Miller, ed.), pp. 89-92. MR**0366044 (51:2295)****[3]**T. M. El-Mistikawy & M. J. Werle, "Numerical method for boundary layers with blowing--the exponential box scheme,"*AIAA J.*, v. 16, 1978, pp. 749-751.**[4]**E. C. Gartland, Jr.,*Strong Stability and a Representation Result for a Singular Perturbation Problem*, Technical Report AMS 87-1, Dept. of Mathematics, Southern Methodist University, January, 1987.**[5]**E. C. Gartland, Jr., "Uniform high-order difference schemes for a singularly perturbed two-point boundary value problem,"*Math. Comp.*, v. 48, 1987, pp. 551-564. MR**878690 (89a:65116)****[6]**E. C. Gartland, Jr.,*An Analysis of the Allen-Southwell Finite-Difference Scheme for a Model Singular Perturbation Problem*, Technical Report AMS 87-2, Dept. of Mathematics, Southern Methodist University, April, 1987.**[7]**A. F. Hegarty, J. J. H. Miller & E. O'Riordan, "Uniform second order difference schemes for singular perturbation problems," in*Boundary and Interior Layers--Computational and Asymptotic Methods*(J. J. H. Miller, ed.), Boole Press, Dublin, 1980, pp. 301-305. MR**589380 (83h:65095)****[8]**T. Kato,*Perturbation Theory for Linear Operators*, 2nd ed., Springer-Verlag, Berlin, 1980.**[9]**S. H. Leventhal, "An operator compact implicit method of exponential type,"*J. Comput. Phys.*, v. 46, 1982, pp. 138-165. MR**665807 (84b:76007)****[10]**J. Lorenz,*Stability and Consistency Analysis of Difference Methods for Singular Perturbation Problems*, Proc. Conf. on Analytical and Numerical Approaches to Asymptotic Problems in Analysis, June 9-13, 1980, Univ. of Nijmegen, The Netherlands (O. Axelsson, L. Frank, and A. Van der Sluis, eds.), North-Holland, Amsterdam, 1981. MR**605505 (83b:65077)****[11]**K. Niederdrenk & H. Yserentant, "Die gleichmässige Stabilität singulär gestörter diskreter und kontinuierlicher Randwertprobleme,"*Numer. Math.*, v. 41, 1983, pp. 223-253. MR**703123 (84j:65049)****[12]**E. O'Riordan & M. Stynes, "An analysis of a superconvergence result for a singularly perturbed boundary value problem,"*Math. Comp.*, v. 46, 1986, pp. 81-92. MR**815833 (87b:65107)****[13]**M. H. Protter & H. P. Weinberger,*Maximum Principles in Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR**0219861 (36:2935)****[14]**D. R. Smith,*A Green Function for a Singularly Perturbed Dirichlet Problem*, Technical Report, Dept. of Mathematics, University of California, San Diego, March, 1984.**[15]**D. R. Smith,*Singular Perturbation Theory*, Cambridge Univ. Press, Cambridge, 1985. MR**812466 (87d:34001)****[16]**M. Stynes & E. O'Riordan, "A finite element method for a singularly perturbed boundary value problem,"*Numer. Math.*, v. 50, 1986, pp. 1-15. MR**864301 (88e:65101)****[17]**W. G. Szymczak & I. Babuška, "Adaptivity and error estimation for the finite element method applied to convection diffusion problems,"*SIAM J. Numer. Anal.*, v. 21, 1984, pp. 910-954. MR**760625 (86c:65143)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10,
65L60

Retrieve articles in all journals with MSC: 65L10, 65L60

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1988-0942145-6

Article copyright:
© Copyright 1988
American Mathematical Society