The spectrum and the stability of the Chebyshev collocation operator for transonic flow

Author:
Dalia Fishelov

Journal:
Math. Comp. **51** (1988), 559-579

MSC:
Primary 65M10; Secondary 76H05

MathSciNet review:
930225

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The extension of spectral methods to the small disturbance equation of transonic flow is considered. It is shown that the real parts of the eigenvalues of its spatial operator are nonpositive. Two schemes are considered; the first is spectral in the *x* and *y* variables, while the second is spectral in *x* and of second order in *y*. Stability for the second scheme is proved. Similar results hold for the two-dimensional heat equation.

**[1]**W. F. Ballhaus & P. M. Goorjian,*Implicit Finite Difference Computation of Unsteady Transonic Flow about Airfoils, Including the Treatment of Irregular Shock Wave Methods*, AIAA paper no. 77-205, (1977).**[2]**Julian D. Cole,*Modern developments in transonic flow*, SIAM J. Appl. Math.**29**(1975), no. 4, 763–787. MR**0386435****[3]**Julian D. Cole and Arthur F. Messiter,*Expansion procedures and similarity laws for transonic flow. I. Slender bodies at zero incidence*, Z. Angew. Math. Phys.**8**(1957), 1–25. MR**0085034****[4]**Björn Engquist and Stanley Osher,*Stable and entropy satisfying approximations for transonic flow calculations*, Math. Comp.**34**(1980), no. 149, 45–75. MR**551290**, 10.1090/S0025-5718-1980-0551290-1**[5]**D. Fishelov,*Application of Spectral Methods to Time Dependent Problems with Application to Transonic Flows*, Ph.D. Thesis, Tel Aviv University, 1985.**[6]**Dalia Fishelov,*Spectral methods for the small disturbance equation of transonic flows*, SIAM J. Sci. Statist. Comput.**9**(1988), no. 2, 232–251. MR**930043**, 10.1137/0909015**[7]**David Gottlieb,*The stability of pseudospectral-Chebyshev methods*, Math. Comp.**36**(1981), no. 153, 107–118. MR**595045**, 10.1090/S0025-5718-1981-0595045-1**[8]**David Gottlieb,*Strang-type difference schemes for multidimensional problems*, SIAM J. Numer. Anal.**9**(1972), 650–661. MR**0314274****[9]**David Gottlieb and Liviu Lustman,*The spectrum of the Chebyshev collocation operator for the heat equation*, SIAM J. Numer. Anal.**20**(1983), no. 5, 909–921. MR**714688**, 10.1137/0720063**[10]**David Gottlieb and Steven A. Orszag,*Numerical analysis of spectral methods: theory and applications*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. MR**0520152****[11]**D. Gottlieb & E. Turkel, private communications, 1983.**[12]**Antony Jameson,*Numerical solution of nonlinear partial differential equations of mixed type*, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 275–320. MR**0468255****[13]**E. Murman & J. Cole, "Calculations of plane steady transonic flows,"*AIAA J.*, v. 9, 1971, pp. 114-121.**[14]**Timothy N. Phillips, Thomas A. Zang, and M. Yousuff Hussaini,*Preconditioners for the spectral multigrid method*, IMA J. Numer. Anal.**6**(1986), no. 3, 273–292. MR**967669**, 10.1093/imanum/6.3.273**[15]**A. Solomonoff & E. Turkel,*Global Collocation Methods for Approximation and the Solution of Partial Differential Equations*, ICASE Report No. 86-60, 1986.**[16]**Hillel Tal-Ezer,*A pseudospectral Legendre method for hyperbolic equations with an improved stability condition*, J. Comput. Phys.**67**(1986), no. 1, 145–172. MR**867974**, 10.1016/0021-9991(86)90119-1

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10,
76H05

Retrieve articles in all journals with MSC: 65M10, 76H05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1988-0930225-0

Keywords:
Spectral methods,
transonic flow,
stability,
Chebyshev polynomials,
eigenvalue problems

Article copyright:
© Copyright 1988
American Mathematical Society