On quartic Thue equations with trivial solutions

Author:
R. J. Stroeker

Journal:
Math. Comp. **52** (1989), 175-187

MSC:
Primary 11D25

MathSciNet review:
946605

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let **K** be a quartic number field with negative absolute discriminant and let be its real quadratic subfield, with . Moreover, assume **K** to be embedded in the reals. Further, let generate the subgroup of units relative to **L** in the group of positive units of **K**. Under certain conditions, which can be explicitly checked, and for suitable linear forms and with coefficients in , the diophantine equation

*u*and

*v*, has only trivial solutions, that is, solutions given by .

Information on a substantial number of equations of this type and their associated number fields is incorporated in a few tables.

**[1]**A. Baker,*Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms*, Philos. Trans. Roy. Soc. London Ser. A**263**(1967/1968), 173–191. MR**0228424****[2]**A. Baker and H. Davenport,*The equations 3𝑥²-2=𝑦² and 8𝑥²-7=𝑧²*, Quart. J. Math. Oxford Ser. (2)**20**(1969), 129–137. MR**0248079****[3]**Andrew Bremner,*A Diophantine equation arising from tight 4-designs*, Osaka J. Math.**16**(1979), no. 2, 353–356. MR**539591****[4]**L. Holtzer,*Zahlentheorie, Teil*I, Math. Naturw. Bibl. 13, Teubner Verlag, Leipzig, 1958.**[5]**Hymie London and Raphael Finkelstein,*On Mordell’s equation 𝑦²-𝑘=𝑥³*, Bowling Green State University, Bowling Green, Ohio, 1973. MR**0340172****[6]**L. J. Mordell,*Diophantine equations*, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. MR**0249355****[7]**Trygve Nagell,*Sur quelques questions dans la théorie des corps biquadratiques*, Ark. Mat.**4**(1962), 347–376 (1962) (French). MR**0150124****[8]**Ken Nakamula,*Class number calculation and elliptic unit. II. Quartic case*, Proc. Japan Acad. Ser. A Math. Sci.**57**(1981), no. 2, 117–120. MR**605295****[9]**Ken Nakamula,*Class number calculation of a quartic field from the elliptic unit*, Acta Arith.**45**(1985), no. 3, 215–227. MR**808022****[10]**R. J. Stroeker,*On the Diophantine equation (2𝑦²-3)²=𝑥²(3𝑥²-2) in connection with the existence of nontrivial tight 4-designs*, Nederl. Akad. Wetensch. Indag. Math.**43**(1981), no. 3, 353–358. MR**632174****[11]**R. J. Stroeker, "On classes of biquadratic diophantine equations with trivial solutions only,"*Abstracts Amer. Math. Soc.*, v. 35, 1984, p. 441.**[12]**R. J. Stroeker and R. Tijdeman,*Diophantine equations*, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 321–369. MR**702521****[13]**R. J. Stroeker and N. Tzanakis,*On the application of Skolem’s 𝑝-adic method to the solution of Thue equations*, J. Number Theory**29**(1988), no. 2, 166–195. MR**945593**, 10.1016/0022-314X(88)90098-4**[14]**A. Thue, "Über Annäherungswerte algebraischer Zahlen,"*J. Reine Angew. Math.*, v. 135, 1909, pp. 284-305.**[15]**Nikos Tzanakis, "On the diophantine equation ,"*Acta Arith.*, v. 46, 1986, pp. 257-269.**[16]**N. Tzanakis & B. M. M. de Weger,*On the Practical Solution of the Thue Equation*, Memorandum 668, Fac. Appl. Math. Un. of Twente, 1987.**[17]**Saburô Uchiyama,*Solution of a Diophantine problem*, Tsukuba J. Math.**8**(1984), no. 1, 131–157. MR**747452****[18]**Theresa P. Vaughan,*The discriminant of a quadratic extension of an algebraic field*, Math. Comp.**40**(1983), no. 162, 685–707. MR**689482**, 10.1090/S0025-5718-1983-0689482-6

Retrieve articles in *Mathematics of Computation*
with MSC:
11D25

Retrieve articles in all journals with MSC: 11D25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0946605-4

Article copyright:
© Copyright 1989
American Mathematical Society