Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation


Authors: Randall L. Dougherty, Alan S. Edelman and James M. Hyman
Journal: Math. Comp. 52 (1989), 471-494
MSC: Primary 41A05; Secondary 65D05
DOI: https://doi.org/10.1090/S0025-5718-1989-0962209-1
MathSciNet review: 962209
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Hermite polynomials are simple, effective interpolants of discrete data. These interpolants can preserve local positivity, monotonicity, and convexity of the data if we restrict their derivatives to satisfy constraints at the data points. This paper describes the conditions that must be satisfied for cubic and quintic Hermite interpolants to preserve these properties when they exist in the discrete data. We construct algorithms to ensure that these constraints are satisfied and give numerical examples to illustrate the effectiveness of the algorithms on locally smooth and rough data.


References [Enhancements On Off] (What's this?)

  • [1] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978. MR 507062 (80a:65027)
  • [2] J. Butland, "A method of interpolating reasonable-shaped curves through any data," Computer Graphics 80 (R.J. Lansdown, ed.), Online Publications, Northwood Hills, Middlesex, 1980, pp. 409-422.
  • [3] C. de Boor & B. Swartz, "Piecewise monotone interpolation," J. Approx. Theory, v. 21, 1977, pp. 411-416. MR 0481727 (58:1826)
  • [4] R. E. Carlson & F. N. Fritsch, "Monotone piecewise bicubic interpolation," SIAM J. Numer. Anal., v. 22, 1985, pp. 386-400. MR 781326 (87a:65032)
  • [5] P. Costantini & R. Morandi, "Monotone and convex cubic spline interpolation," Calcolo, v. 21, 1984, pp. 281-294; and "An algorithm for computing shape-preserving cubic spline interpolation to data," Calcolo, v. 21, 1984, pp. 295-305. MR 799994 (86j:65016)
  • [6] B. Dimsdale, "Convex cubic splines, " IBM J. Res. Develop., v. 22, 1978, pp. 168-178. MR 0494833 (58:13617)
  • [7] A. Edelman & C. A. Micchelli, "Admissible slopes for monotone and convex interpolation," Numer. Math., v. 51, 1987, pp. 441-458. MR 902100 (89b:65031)
  • [8] S. C. Eisenstat, K. R. Jackson & J. W. Lewis, "The order of monotone piecewise cubic interpolation," SIAM J. Numer. Anal., v. 22, 1985, pp. 1220-1237. MR 811195 (87d:65014)
  • [9] J. C. Ferguson, Shape Preserving Parametric Cubic Curve Interpolation, Ph. D. thesis, University of New Mexico, 1984.
  • [10] J. C. Ferguson & K. Miller, Characterization of Shape in a Class of Third Degree Algebraic Curves, TRW report 5322-3-5, 1969.
  • [11] F. N. Fritsch, Use of the Bernstein Form to Derive Sufficient Conditions for Shape Preserving Piecewise Polynomial Interpolation, Lawrence Livermore National Laboratory report UCRL-91392, March 1984.
  • [12] F. N. Fritsch & J. Butland, "A method for constructing local monotone piecewise cubic interpolants", SIAM J. Sci. Statist. Comput., v. 5, 1984, pp. 300-304. MR 740848 (85h:65022)
  • [13] F. N. Fritsch & R. E. Carlson, "Monotone piecewise cubic interpolation," SIAM J. Numer. Anal., v. 17, 1980, pp. 238-246. MR 567271 (81g:65012)
  • [14] J. M. Hyman, "Accurate monotonicity preserving cubic interpolation," SIAM J. Sci. Statist. Comput., v. 4, 1983, pp. 645-654. MR 725659 (85a:65021)
  • [15] J. M. Hyman, Accurate Convexity-Preserving Cubic Interpolation, informal report, Los Alamos Scientific Laboratory document, LA-UR-80-3700, Los Alamos, NM, November 1980.
  • [16] J. M. Hyman & B. Larrouturou, "The numerical differentiation of discrete functions using polynomial interpolation methods," Numerical Grid Generation for Numerical Solution of Partial Differential Equations (J.F. Thompson, ed.), Elsevier North-Holland, New York, 1982, pp. 487-506. MR 675799
  • [17] D. F. McAllister, E. Passow & J. A. Roulier, "Algorithms for computing shape preserving spline interpolations to data," Math. Comp., v. 31, 1977, pp. 717-725. MR 0448805 (56:7110)
  • [18] D. F. McAllister & J. A. Roulier, "An algorithm for computing a shape preserving oscillatory quadratic spline," ACM Trans. Math. Software, v. 7, 1982, pp. 331-347. MR 630439 (82h:65009)
  • [19] D. F. McAllister & J. A. Roulier, "Interpolation by convex quadratic splines," Math. Comp., v. 32, 1978, pp. 1154-1162. MR 0481734 (58:1833)
  • [20] H. Mettke, "Convex cubic Hermite-spline interpolation," J. Comput. Appl. Math., v. 9, 1983, pp. 205-211, and v. 11, 1984, pp. 377-378. MR 715537 (86f:65038a)
  • [21] E. Neuman, "Convex interpolating splines of arbitrary degree II," BIT, v. 22, 1982, pp. 331-338. MR 675667 (84i:41016)
  • [22] E. Passow & J. A. Roulier, "Monotonic and convex spline interpolation," SIAM J. Numer. Anal., v. 14, 1977, pp. 904-909. MR 0470566 (57:10316)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 41A05, 65D05

Retrieve articles in all journals with MSC: 41A05, 65D05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1989-0962209-1
Keywords: Approximation theory, convexity, interpolation, monotonicity, shape preservation, spline
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society