A new lower bound for odd perfect numbers

Authors:
Richard P. Brent and Graeme L. Cohen

Journal:
Math. Comp. **53** (1989), 431-437, S7

MSC:
Primary 11A25; Secondary 11Y05, 11Y70

DOI:
https://doi.org/10.1090/S0025-5718-1989-0968150-2

MathSciNet review:
968150

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe an algorithm for proving that there is no odd perfect number less than a given bound *K* (or finding such a number if one exists). A program implementing the algorithm has been run successfully with , with an elliptic curve method used for the vast number of factorizations required.

**[1]**W. Beck & R. Najar, "A lower bound for odd triperfects,"*Math. Comp.*, v. 38, 1982, pp. 249-251. MR**637303 (83m:10006)****[2]**R. P. Brent, "Some integer factorization algorithms using elliptic curves,"*Australian Computer Science Communications*, v. 8, 1986, pp. 149-163.**[3]**R. P. Brent, G. L. Cohen & H. J. J. te Riele,*An Improved Technique for Lower Bounds for Odd Perfect Numbers*, Report TR-CS-88-08, Computer Sciences Laboratory, Australian National University, August 1988.**[4]**J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman & S. S. Wagstaff, Jr.,*Factorizations of**Up to High Powers*, Contemp. Math., vol. 22, Amer. Math. Soc., Providence, R.I., 1983. MR**715603 (84k:10005)****[5]**M. Buxton & S. Elmore, "An extension of lower bounds for odd perfect numbers,"*Notices Amer. Math. Soc.*, v. 23, 1976, p. A-55.**[6]**M. Buxton & B. Stubblefield, "On odd perfect numbers,"*Notices Amer. Math. Soc.*, v. 22, 1975, p. A-543.**[7]**G. L. Cohen & P. Hagis, Jr., "Results concerning odd multiperfect numbers,"*Bull. Malaysian Math. Soc.*, v. 8, 1985, pp. 23-26. MR**810051 (87a:11010)****[8]**R. K. Guy,*Unsolved Problems in Number Theory*, Springer-Verlag, New York, 1981. MR**656313 (83k:10002)****[9]**P. Hagis, Jr., "A lower bound for the set of odd perfect numbers,"*Math. Comp.*, v. 27, 1973, pp. 951-953. MR**0325507 (48:3854)****[10]**H.-J. Kanold, "Über mehrfach vollkommene Zahlen. II,"*J. Reine Angew. Math.*, v. 197, 1957, pp. 82-96. MR**0084514 (18:873b)****[11]**T. Nagell,*Introduction to Number Theory*, Chelsea, New York, 1981.**[12]**B. M. Stewart,*Math. Rev.*,**81m**:10011.**[13]**B. Stubblefield, "Lower bounds for odd perfect numbers (beyond the googol)" in*Black Mathematicians and Their Works*, Dorrance, Ardmore, PA, 1980, pp. 211-222. MR**573929 (81m:10011)****[14]**B. Tuckerman, "A search procedure and lower bound for odd perfect numbers,"*Math. Comp.*, v. 27, 1973, pp. 943-949. MR**0325506 (48:3853)****[15]**S. Wagon, "Perfect numbers,"*Math. Intelligencer*, v. 7, 1985, pp. 66-68. MR**784945 (86f:11010)**

Retrieve articles in *Mathematics of Computation*
with MSC:
11A25,
11Y05,
11Y70

Retrieve articles in all journals with MSC: 11A25, 11Y05, 11Y70

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1989-0968150-2

Article copyright:
© Copyright 1989
American Mathematical Society